Читать «Дилемма заключенного и доминантные стратегии. Теория игр» онлайн - страница 5
Хорди Деулофеу
Читатель отметит своеобразный способ выполнения операций, а также использование дробей.
Для деления Ахмес находит три степени числа 2, которые в сумме дают 19. Это 16, 2 и 1. Затем он находит восьмую часть для каждого из этих чисел (получив 2, 1/4, 1/8) и выполняет сложение.
НАСТОЛЬНАЯ ИГРАУРСКИХ ЦАРЕЙ. ИСТОРИЯ ДЛИНОЙ В 4 000 ЛЕТ
Наряду с египетской игрой сенет, это одна из древнейших известных нам игр. Украшенная драгоценностями доска для этой игры, найденная в шумерском городе Ур британским археологом сэром Чарльзом Леонардом Вулли примерно в 1920 году, имеет возраст свыше 4 000 лет. В настоящее время эта доска хранится в Британском музее в Лондоне. Предполагается, что эта игра была привилегией лишь королей и знати. Тот факт, что ее находили в гробницах, позволяет предположить, что ее помещали туда, чтобы усопший мог насладиться игрой в загробной жизни. Правила игры урских царей, как и древнеегипетской игры сенет, точно неизвестны.
Однако по дошедшим до нас предметам (помимо доски было найдено 7 белых и 7 черных фишек из перламутра и сланца и 6 игральных костей в форме правильной треугольной пирамиды) можно заключить, что целью игры было провести все фишки по доске быстрее соперника. Интересная форма доски из 20 клеток — два прямоугольника 3 × 2 и 3 × 4 соединены прямоугольником 1 × 2 — позволяет предположить, каким путем нужно было провести фишки по доске.
Для вычислений с дробями используются только так называемые египетские дроби, числитель которых равен единице, а знаменатель — натуральному числу. Этот любопытный способ вычислений, придуманный египтянами, в разное время изучали выдающиеся математики. Среди них Леонардо Пизанский, именуемый Фибоначчи (1175—1250), один из величайших математиков Средневековья. Именно он первым доказал осуществимость этого метода. Англичанин Джеймс Джозеф Сильвестр (1814—1897) открыл новые способы выражения дроби в виде суммы единичных дробей. Венгерский математик Пол Эрдёш (1913—1996), автор наибольшего числа статей среди математиков современности, проявлял особый интерес к теории чисел и сформулировал несколько открытых задач о египетских дробях, предложив собственные решения некоторых из них.
Игры и математика в Средневековье
Изложив лишь некоторые наиболее интересные факты из древней истории взаимоотношений игр и математики, перенесемся в XIII век. Именно тогда жил Леонардо Пизанский, известный как Фибоначчи (1175—1250), автор «Книги абака» (1202), где впервые в истории западного мира была представлена десятичная позиционная система счисления. В этой книге описана известная задача о размножении кроликов, в которой фигурирует интересная последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, ..., получивших название чисел Фибоначчи. Закономерность для чисел Фибоначчи крайне проста (первые два члена ряда равны 1, а каждый последующий равен сумме двух предыдущих), но этот ряд обладает удивительными свойствами. Так, он связан с числом Ф, описывающим золотое сечение. Ф = (1+у√5)/2 является пределом последовательности an/an-1 при n, стремящемся к бесконечности, где an — член последовательности Фибоначчи.