Читать «Том 3. Квантовая механика» онлайн - страница 295

Ричард Фейнман

44

Тем, кто перескочил через гл. 4, придется пропустить и этот параграф.

45

Только не старайтесь сделать пакет чересчур узким.

46

Знак корня, который здесь следовало поставить, это технический вопрос, связанный с допустимыми знаками к в (11.39) и (11.40). Мы не будем здесь вдаваться в подробности.

47

Литература: Ч. Киттель, Введение в физику твердого тела, М.—Л., 1958, гл. 13, 14, 18.

48

Во многих книжках эта же энергетическая диаграмма истолковывается иначе. Шкалу энергий относят только к электронам. Вместо того чтобы думать об энергии дырки, говорят о той энергии, которую имел бы электрон, если бы он заполнил дырку. Эта энергия меньше, нежели энергия свободного электрона, причем как раз на ту величину, которая показана на фиг. 12.5. При такой интерпретации шкалы энергий ширина энергетической щели — это наименьшая энергия, которой нужно снабдить электрон, чтобы перевести его из связанного состояния в зону проводимости.

49

Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.

50

Квазичастицы обсуждаемого типа могут действовать и как бозе- и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он — бозон.

51

Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s=±N/2 дают одно и то же состояние.

52

Когда имеется пара состояний (с разными распределениями амплитуд) с той же энергией, мы говорим, что эта пара состояний «вырождена». Заметьте, что энергией E0-А могут обладать четыре электрона.

53

Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.

54

Представьте себе, что по мере сближения точек хn амплитуда А прыжков из хn=1 в хn возрастает.

55

О распределениях вероятностей шла речь в гл. 6, § 4 (вып. 1).

56

Был использован тот факт, что -∞+∞exp(-t2)dt=√π; см. вып. 1

57

Помните, еще раньше мы условились, что e2qe2/4πε0

58

Литература: А. Р. Эдмондс, Угловые моменты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.

59

Кстати, вы можете доказать, что ^Q — это обязательно унитарный оператор, т. е. если он действует на |ψ>, приводя к |ψ>, умноженному на некоторое число, то это число должно иметь вид е, где δ — вещественно. Это мелкое замечание, а доказательство основано на следующем наблюдении. Всякая операция наподобие отражения или поворота не приводит к потере каких-либо частиц, так что нормировки |ψ'> и |ψ> должны совпадать; отличаться они вправе только на множитель с чисто вещественной фазой в показателе.