Читать «Числа: от арифметики до высшей математики» онлайн - страница 65
Айзек Азимов
(-1/2 - 1/2√3i) × (-1/2 - 1/2√3i) × (-1/2 - 1/2√3i) = 1.
Точно так же можно показать, что у числа -1 есть три корня третьей степени, два из которых комплексные, по три кубических корня и у чисел i и -i.
И не только i
На нашем «шахматном» шаблоне можно изобразить также третью линию, или ось, так, чтобы помимо направлений север, юг, запад и восток у нас появились направления «внутрь» и «наружу». Таким образом, наша «шахматная доска» из плоской фигуры превращается в объемную фигуру. Теперь точно так же, как в свое время мы получили сетку на плоскости, мы можем составить мозаику из кубиков.
Третья ось состоит из гипермнимых чисел, которые обозначаются буквой j. На гипермнимой оси также имеется положительная и отрицательная области, где, соответственно, расположены положительные (+1j, +2j, +3j, +4j, +5j, +6j и т. д.) и отрицательные (-1j, -2j, -3j, - 4j, -5j, -6j и т. д.).
Теперь числа располагаются в пространстве, на точках пересечения плоскостей север—юг, запад—восток и «внутрь» и «наружу». При пересечении этих плоскостей образуются кубы, принцип тот же, что и при образовании квадратов на нашем «шахматном шаблоне». Каждая точка такого пространства имеет собственные координаты, которые являются гиперкомплексным числом.
Нам легко представить себе три оси в пространстве, поскольку это привычные три измерения: длина, ширина и высота. Однако математики оперируют с большим количеством измерений. Иногда они работают даже в таких системах, где точное количество осей не определено. Тогда говорят об «n-мерном пространстве», где n — это любое число.
Глава 10
БЕСКОНЕЧНОСТЬ
Каждый, кто начинает думать о числах, неизбежно приходит к выводу, что существует огромное количество чисел, и совершенно непонятно, как можно его выразить. На помощь приходит поэзия. Мы можем сказать, что чисел так же много, как песчинок в пустыне, как капель воды в океане или как мерцающих звезд на небе. Но для математика такие сравнения бесполезны. С точки зрения математика, мы можем к любому числу прибавить единицу и получить следующее число, затем к полученному числу прибавить единицу и так далее. Поскольку в математике нет никаких ограничений для операций сложения, можно сложить любые два числа, и, следовательно, этот процесс бесконечен. Таким образом, мы можем взять сколь угодно большое число, прибавить
к нему единицу и получить еще большее. Мы можем представить себе число, протяженность которого равна расстоянию до дальней звезды, но и к нему можно прибавить единицу и получить еще большее число.
Последовательность целых чисел, записанных в порядке 1, 2, 3…, представляет собой бесконечность, то есть нечто, не имеющее конца. То есть, когда мы пишем 1, 2, 3…, это означает «1, 2, 3 и далее бесконечно».
Точно таким же образом мы можем записать ряд целых отрицательных чисел: -1, -2, -3…, что будет означать «-1, -2, -3 и далее бесконечно» или ряд положительных или отрицательных мнимых чисел: +1i, +2i, +3i… или -1i, -2i, -3i…
А теперь давайте запишем другой ряд чисел, ряд четных чисел: 2, 4, 6, 8 и так далее. Сколько существует четных чисел?