Читать «Число, пришедшее с холода. Когда математика становится приключением» онлайн - страница 90

Рудольф Ташнер

Тем не менее утверждение фон Линдемана, несмотря на негативное выражение, ни в коей мере не противоречит лозунгу Гильберта о том, что математика не приемлет «ignorabimus». Это утверждение сообщает нам некоторое знание, а именно знание о том, что невозможно ни в коем случае. Так же невозможно, как, допустим, назвать 5 четным числом.

Кроме того, Гильберт рассматривает квадратуру круга с точки зрения объектов «круг» и «квадрат» как таковых. При таком подходе можно говорить о том, что для каждого круга существует квадрат равной ему площади. Еще в 1685 г. польский математик Адам Коханский изобрел изящное построение с помощью циркуля и линейки; Коханскому удалось построить на круге почти равный ему по площади квадрат. Толщина карандашной линии, шероховатость бумаги и несовершенство человеческого органа зрения не позволяли заметить разницу в площадях, настолько приблизился Коханский своим построением к идеалу. Приблизился почти вплотную. Пусть даже ему и не удалось в точности воспроизвести такой квадрат, все же в мыслях он существует.

Это была решающая идея, запавшая в душу Гильберта: геометрические объекты присутствуют не в своей чувственно воспринимаемой форме — они становятся для нас явными только потому, что мы можем их себе помыслить. Чувственно воспринимаемое изображение на листе бумаги есть лишь наглядное отражение этого мысленного образа. Так же думал когда-то Платон: не построенный на бумаге, а созданный в мыслях треугольник является по-настоящему «истинным», ибо только воображаемый умом треугольник может соответствовать своему идеалу.

Именно поэтому две не являющиеся параллельными прямые пересекаются даже в том случае, если точку пересечения не удается изобразить ввиду малости листа бумаги, на которую нанесены прямые. Мы в любом случае можем точно указать место точки их пересечения — только потому, что она существует в наших мыслях. Но что будет с параллельными прямыми? Можно ли говорить и в этом случае о точке пересечения? Очевидно, нет, потому что, если бы даже она и существовала, то находилась бы в бесконечности. Но допустимо ли представлять себе, что точка пересечения параллельных прямых находится в бесконечности? Как вообще помыслить себе бесконечность?

Размышления и вопросы такого рода заставили Гильберта систематически упорядочить законы геометрического мышления. Для этого он поступил приблизительно так же, как Евклид более чем за две тысячи лет до него: во главу угла своей геометрии Гильберт уложил «аксиомы», утверждения, которые надо принять безоговорочно для того, чтобы корректно заниматься геометрией. Первая из двадцати аксиом гласит: «Две не совпадающие между собой точки всегда определяют прямую», на которой они лежат. За первой следует вторая аксиома: «Любые две не совпадающие между собой точки прямой определяют эту прямую». В качестве третьей аксиомы Гильберт формулирует следующее утверждение: «На одной прямой всегда существуют по крайней мере две точки; на одной плоскости всегда существуют по крайней мере три точки, не лежащие на одной прямой».