Читать «История античной эстетики. Последние века» онлайн - страница 542
Алексей Федорович Лосев
б) Прокл хочет сказать, что если точка на прямой разделяет прямую на две части, то такая точка указывает не только на то протяжение линии, которое имеется до нее, но также и на то последующее протяжение линии, которое идет дальше. Уже по одному этому нельзя сказать, что точка есть то, что не имеет частей. По крайней мере, два момента в ней имеются, потому что иначе она не указывала бы на предшествующее и на последующее протяжение линии, то есть вообще не была бы границей между двумя промежутками линии, то есть и вообще не была бы точкой. Действительно, она выше всяких частей. А в то же самое время очевидно, что эти свои части точка все-таки содержит в себе, по крайней мере, хотя бы как принцип. Но при этом Прокл идет еще дальше.
Не будучи сама по себе делимой, но содержа в себе принцип деления, точка предполагает это деление как деление бесконечное. Поясняя мысль Прокла, необходимо сказать, что точка есть принцип деления прямой не только в одном направлении, но и в любых других направлениях, а таких направлений существует бесконечное количество. Поэтому точка оказывается не только общим понятием неделимости, но она в то же самое время оказывается и вполне делимой, вполне телесной, и делимость ее бесконечна. Она - и "умопостигаема" и "теловидна", и мощность (dynamis) содержащегося в ней принципа деления "беспредельна" (87, 11 - 88, 10). Благодаря точке, поскольку она везде относится к разному содержанию, все мыслится раздельным. Но, благодаря той же точке, которая везде остается сама собой, все раздельное обязательно мыслится как единство. В этом отношении точка совпадает с тем, что неоплатоники называют первоединым. Но только первоединое выше всего и выше всякого участия в нем чего-нибудь иного, то есть оказывается неучаствуемым. Точка, наоборот, есть такое сверхбытийное единство, в котором все бытие участвует, чтобы вообще быть чем-то единым, чтобы вообще быть единым и, значит, чтобы вообще существовать. Получается бесконечная иерархия точек, начиная от простоты и совершенства полной неделимости и кончая сложными и бесконечно разнообразными логосами разделения (88, 10 - 89, 19).
Что касается космоса, то он тоже представляет собой не что иное, как единую точку, которая единообразно управляет всеми своими порождениями, откуда и возникает шаровидность космоса, управляемая единым центром. Космическое круговращение - это прекрасный образ того, чем является точка и в своей неделимости и в своей потенции быть принципом бесконечно разнообразной делимости (89, 20 - 90, 6). Для иллюстрации этого Прокл привлекает ту картину мира, которую рисует Платон (R.Р. X 616 с-е) и которая является не чем иным, как "веретеном необходимости", управляемым соответствующими демиургическими точками.