Читать «История античной эстетики. Последние века» онлайн - страница 541
Алексей Федорович Лосев
В заключение нам хотелось бы указать еще одну работу, в которой специально рассматривается философия математики Прокла. Выше мы ее не указали потому, что она специально не занимается вопросом о гипотезе. Зато это - единственный систематический труд по философии математики Прокла. М.Steck написал целое исследование на эту тему, которое помещено в немецком переводе комментария Прокла на Евклида Р. Leander Schonberger'a (с. 3-152).
Эта работа весьма внимательно относится как к проблеме математической онтологии у Прокла, так особенно (что очень важно) и к структурным сторонам учения Прокла.
3. Красота точки
Исследования прокловского метода гипотезы во многих отношениях весьма поучительны. Однако, покамест мы не углубились в конкретный анализ каких-нибудь определенных гипотез у Прокла, до тех пор проблематика Прокла в этой области не станет для нас очевидной. Для своего анализа из огромного количества "гипотетических" проблем мы выбрали проблему точки и проблему круга. Их смысловая заряженность (вместо изолированно-метафизической абстрактности) и связанная с этим эстетическая выразительность прослеживаются в областях этих двух проблем весьма отчетливо.
а) Обсуждая проблему точки, Прокл, прежде всего, отгораживается как от чувственно-материального понимания точки, так и от ее абстрактно-логического определения. Чувственно-материальная точка обладает разными физическими свойствами, которые мы совершенно не мыслим, когда говорим о точке даже и в геометрии. Но и то геометрическое определение точки как чего-то лишенного частей тоже недостаточно и вторично. А Евклид именно и определяет точку как то, что не имеет частей. Для геометрии, возможно, это и правильно. Но для философии этого совершенно недостаточно, потому что определение не есть только отрицание чего-нибудь, но имеет также и свою положительную основу.
Дело в том, что конкретно взятая геометрическая точка всегда есть граница между разными частями прямолинейного отрезка. Как же то, что не имеет частей, может быть границей? Кроме того, линия есть граница плоскости, а плоскость является границей трехмерного тела. Трехмерное тело тоже имеет свою границу, которая только и делает его трехмерным телом определенного вида. Во всех этих случаях происходит соприкасание одного геометрического элемента с другим, а в случае трехмерного тела - совпадение с самим собою. Но для всякого соприкасания необходима хотя бы одна точка, в которой происходит соприкасание. И как же возможно такое соприкасание, если точка вообще выходит за пределы всяких соприкасающихся элементов и даже лишена вообще всякой разделенности, которая необходима для границы соприкасающихся элементов? Значит, точка, отделяющая одну телесную и делимую область от другой, необходимым образом должна содержать в себе и этот материальный момент (In Eucl. 85, 1 - 87, 16).