Читать «Математический аппарат инженера» онлайн - страница 60
Виталий Петрович Сигорский
Номера столбцов определяются расположенными над ними n-разрядными числами с основанием k, каждое из которых читается сверху вниз. Номера функций отождествляются с kn-разрядными числами, которые соответствуют строкам матрицы в той же системе счисления.
4. Двузначные однородные функции. Наиболее простым и в то же время важнейшим классом однородных функций являются двузначные (булевы) функции, частично рассмотренные в (1.5. 2) и последующих пунктах.
- 506 -
Областью определения булевых функций от n переменных служит множество слов длины n. Они представляют собой всевозможные наборы из n двоичных цифр и их общее количество равно 2n.
Число всевозможных булевых функций n переменных v = 2n быстро возрастает с увеличением n (при n = 3 оно равно 256, а при n = 5 превышает 4 миллиарда). Но функции одной и двух переменных еще можно перечислить и подробно исследовать, так как их количество сравнительно невелико (v = 4 при п = 1 и v = 16 при n = 2).
Булевы функции одной переменной. Общая таблица соответствия для булевых функций одной переменной имеет вид (справа указаны обозначения функций):
x | | | 0 | 1 | | | y |
--- | | | --- | --- | | | --- |
y0 | | | 0 | 0 | | | 0 |
y1 | | | 0 | 1 | | | x |
y2 | | | 1 | 0 | | | x̅ |
y3 | | | 1 | 1 | | | 1 |
Две функции у0 = 0 и у3 = 1 представляют собой функции-константы (тождественный нуль и тождественная единица), таккакони не изменяют своих значений при изменении аргумента. Функция y1 = х повторяет значения переменной х и потому просто совпадает с ней.
Единственной нетривиальной функцией является у2 = x̅ , называемая отрицанием или инверсией ( x̅ читается «не х»). Она равна 1, когда аргумент принимает значение 0, и равна 0 при аргументе 1.
- !!!!!!!!!!!!!!!!!!!!! -
- Продолжение следует... -
- Содержание продолжения -
...
2. Алгебра логики
3. Контактные схемы
4. Логические схемы
5. Минимизация булевых функций
6. Конечные автоматы
1. Основные определения. В контактных и логических схемах значения выходных переменных определяются только комбинацией значений переменных на входах в данный момент времени. Поэтому их называют комбинационными схемами. В более общем случае выходные переменные могут зависеть от значении входных переменных не только в данный момент, но и от их предыдущих значений. Иначе говоря, значения выходных переменных определяются последовательностью значений входных переменных, в связи, с чем схемы с такими свойствами называют последовательностными. Если входные и выходные переменные принимают значения из конечных алфавитов, то оба типа схем объединяются под названием конечные автоматы.