Читать «Математический аппарат инженера» онлайн - страница 58
Виталий Петрович Сигорский
При рассмотрении конечных автоматов, контактных и логических схем используются различные способы представления логических функций: многомерные кубы, карты Карно, символика s-кубов. На основе таких представлений излагаются основные методы мини
- 503 -
мизации булевых функций и их применение к синтезу контактных и логических схем.
В последнее время, наряду с двоичными функциональными элементами, разработаны и находят практическое применение многозначные элементы, характеризующиеся рядом положительных особенностей. В связи с этим сильно возросло значение многозначной логики, изложению основных положений которой посвящен специальный параграф. Там же кратко представлены другие логики, развившейся в связи с техническими и биологическими проблемами: пороговая, мажоритарная, нейронная, потенциально-импульсная и фазоимпульсная.
Значительное внимание в настоящей главе уделяется логике высказываний и логике предикатов. Символический язык этих разделов математической логики широко используется не только в самой математике, но и в технической литературе. Кроме того можно полагать, что формальные методы логического обоснования станут со временем необходимым элементом при решении практических задач, а значит, и составной частью математического аппарата инженера. Этому в значительной мере способствует развитие автоматизации проектирования с применением вычислительной техники.
В заключительном параграфе приводятся некоторые сведения из теории алгоритмов, которые могут представлять интерес для инженеров в связи с задачами алгоритмизации процессов производства и проектирования.
1. Логические функции
1. Логические функции как отображения. Отличительная особенность логических функций состоит в том, что они принимают значения в конечных множествах. Иначе говоря, область значений логической функции всегда представляет собой конечную совокупность чисел, символов, понятий, свойств и, вообще, любых объектов. Если область значений функции содержит k различных элементов, то она называется k-значной функцией.
Чтобы различать элементы области значений функции, их необходимо как-то отметить. Удобнее всего элементы перенумеровать числами от 1 до k или обозначить какими-нибудь символами (например, буквами). Перечень всех символов, соответствующих области значений, называют
- 504 -
Логические функции могут зависеть от одной, двух и, вообще, любого числа переменных (аргументов) x1, x2, ..., xn. В отличие от самой функции, аргументы могут принимать значения из элементов как конечных, так и бесконечных множеств.
В теоретико-множественном смысле логическая функция n переменных y = f(x1, x2, ..., xn) представляет собой отображение множества наборов (n-мерных векторов, кортежей, последовательностей) вида (x1, x2, ..., xn), являющегося областью ее определения, на множестве ее значений N = {α1, α2, ..., αn}. Логическую функцию можно также рассматривать как операцию, заданную законом композиции X1, X2, ..., Xn где - множества, на которых определены аргументы x1 ∈ X1, x2 ∈ X2, ..., xn ∈ Xn.