Читать «Математический аппарат инженера» онлайн - страница 56
Виталий Петрович Сигорский
Восприятие использование абстрактного языка теории множеств и других разделов современной математики позволяют объединять и исследовать с единых позиций такие понятия и явления, которые ранее казались далекими и различными. При этом важно уметь применять к реальным явлениям те математические понятия и методы, которые наиболее близки к ним, и научиться за общими абстрактными понятиями видеть конкретные образы окружающего мира.
1. Алгебра множеств
1. Свойства операций над множествами. Операции над множествами, сформулированные в (1.2.7), как и операции над числами, обладают некоторыми свойствами (табл. 1). Эти свойства выражаются совокупностью тождеств, справедливых независимо от конкретного содержания входящих в них множеств, являющихся подмножествами некоторого универсума U.
Тождества (1а)-(3а) выражают соответственно коммутативный, ассоциативный и дистрибутивный законы для объединения, а тождества (1б)-(3б) — те же законы для пересечения. Соотношения (4а)-(7а) определяют свойства пустого множества ∅ и универсума U относительно объединения, а соотношения (4б) — (7б) — относительно пересечения.
Выражения (8а) и (8б), называемые законами идемпотентности, позволяют записывать формулы с множества без коэффициентов и показателей степени. Зависимости (9а) и (9б) представляют законы поглощения, а (10а) и (10б) — теоремы де Моргана.
- 82 -
Таблица 1
Основные свойства операций над множествами
1 а) A ∪ B = B ∪ A | 1 б) A ∩ B = B ∩ A |
2 а) A ∪ (B∪ C)=(A∪ B)∪ C | 2 б) A ∩ (B∩ C)=(A∩ B)∩ C |
3 а) A∪ (B∩ C)=(A∪ B) ∩ (A∪ C) | 3 б) A∩ (B∪ C)=(A∩ B) ∪ (A∩ C) |
4 а) A ∪ ∅ = A | 4б) A ∩ U = A |
5 а) A ∪ A̅ = U | 5 б) A ∩ A̅ = ∅ |
6а) A ∪ U = U | 6 б) A ∩ ∅ = ∅ |
7 а) ∅̅ = U | 7 б) U̅ = ∅ |
8а) A ∪ A = A | 8 б) A ∩ A = A |
9 а) A ∪ (A ∩ B) = A | 9 б) A ∩ (A ∪ B) = A |
10 а) | 10 б) |
11) если A ∪ B =U и A ∩ B = ∅, то B = A̅
12) A̅ = U \ A
13) A̿ = A
14) A \ B = A ∩ B̅
15) A + B = (A ∩ B̅) ∪ (A̅ ∩ B)
16) A + B = B + A
17) (A + B) + C = A + (B + C)
18) A + ∅ = ∅ + A = A
19) A ⊂ B, если и только если A ∩ B = A или A ∪ B = B или A ∩ B̅ = ∅
20) A = B, если и только если (A ∩ B̅ ) ∪ (A̅ ∩ B ) = ∅
Соотношения (11)-(20) отражают свойства дополнения, разности, дизъюнктивной суммы, включения равенства.
2. Принцип двойственности. Первые десять свойств в табл. 1 представлены парами двойственных (дуальных) соотношений, одно из которых получается заменой в другом символов: ∪ на ∩ и ∩ на ∪, а также ∅ на U и U на ∅. Соответствующие пары символов ∪, ∩ и ∅, U называются двойственными (дуальными) символами.