Читать «Математический аппарат инженера» онлайн - страница 51
Виталий Петрович Сигорский
P(A ∩ B) = P(A)PA(B).
Например, вероятность вынуть два белых шара из урны, в которой находятся 2 белых и 3 черных шара (предполагается, что вынутый шар не возвращается в урну) равна произведению вероятности вынуть белый шар первый раз (событие А) на вероятность вынуть белый шар второй раз (событие В) при условии, что первым был белый шар (произошло событие А)б т.е. P(A ∩ B) = 2/5 · 1/4 = 1/10. Если вынутый шар возвращается в урну, то А и В независимы и P(A ∩ B) = 2/5 · 2/5 = 4/25. Из приведенной выше формулы следует выражение
которое часто рассматривается как определение условной вероятности, если каким-либо способом определены P(A ∩ B) и P(A). Ясно, что для независимых событий PA(B) совпадает с P(B).
Вероятность одновременного наступления нескольких зависимых событий выражается формулой
P(A1, A2, ... , An) = P(A1)PA1 (A2)
которая получается по индукции из формулы для двух событий.
Здесь
9. Объединение событий. Простая формула для вероятности появления одного из несовместных событий (6) нуждается в обобщении, если события совместны. Пусть из n равновозможных исходов событию А благоприятствуют mA исходов, а событию B — mB исходов. Так как множества совместных событий пересекаются, то сумма mA + mB, кроме исходов, благоприятствующих появлению
- 79 -
одного из событий А или В, дважды учитывает mAB исходов, благоприятствующих одновременному появлению А и В. Поэтому из общего числа исходов n появлению событий А или В (или обоих вместе) будут благоприятствовать mA + mB - mAB исходов, на основании чего имеем
Эта формула получена из каких-либо ограничений относительно характера событий А и В:
для зависимых событий
P(A ∪ B) = P(A) + P(B) -P(A)PA(B),
для независимых событий
P(A ∪ B) = P(A) + P(B) -P(A)(B).
10. Независимость и несовместность. При использовании приведенных соотношений необходимо четко понимать смысл таких свойств событий, как независимость и несовместностью. Условиями независимости событий можно рассматривать каждое из соотношений
P(A ∩ B) = P(A) + P(B); PA(B) = P(B)
Так, при бросании двух игральных костей вероятности событий А(дубль) и В(меньше 6 очков) равны соответственно P(A) = 6/36 = 1/6 и P(B) = 10/36 = 5/18. Одновременному появлению этих событий соответствует подмножество A ∩ B = {(1,1),(2,2)} и его вероятность P(A ∩ B) = 2/36=1/18. Так как P(A ∩ B) B≠ P(A)P(B), то рассматриваемые события являются зависимыми. С другой стороны, событие В при условии наступления события А определяется как подмножество {(1,1),(2,2)} основного множества {(1,1),(2,2), (3,3),(4,4}{(5,5),(6,6)}, и PA(B) = 2/6 = 1/3, т.е. не совпадает с P(B)= 5/18. По соответствующим формулам имеем:
P(A ∩ B) = P(A)PA(B) = 1/6 · 1/3 = 1/18;
P(A ∪ B) = P(A) + P(B) — P(A)PA(B) = 1/6 + 5/18 -1/6 · 1/3 = 7/18.
Очевидно, те же результаты получим, если пример В в качестве дополнительного условия для А. Так как множество {(1,1),(1,2),