Читать «Статистика и котики» онлайн - страница 16
Владимир Савельев
Иными словами, знак, который получается при перемножении отклонений, может служить индикатором того, является ли наш котик Барсиком, который становится счастливее при увеличении порций, либо Мурзиком, которому еда отвратительна. Осталось только понять, кто из них делает больший вклад в наблюдаемые данные, что достигается простым суммированием полученных произведений. Если при результате стоит плюс, то победили Барсики и связь положительная. Если минус — то преобладают Мурзики и связь отрицательная. Если же ответ близок к нулю, объявляется боевая ничья и признается отсутствие связи.
Далее с помощью некоторых нехитрых преобразований этот результат приводят в нужную размерность, получив так называемый
Нулевая гипотеза такого коэффициента — связи нет, альтернативная — связь есть (не важно, положительная или отрицательная). Если коэффициент корреляции достаточно большой по модулю, то нулевая гипотеза отвергается в пользу альтернативной.
Основная проблема r Пирсона как параметрического критерия (т. е. использующего в расчетной формуле средние значения) заключается в том, что он очень не любит выбросы и ненормальные распределения. Поэтому у него есть непараметрический аналог —
Чтобы его вычислить, упорядочим наших котиков от самого счастливого до самого несчастного и присвоим им ранги. Затем мы перераспределим их от самого переедающего до самого голодного и присвоим им ранги уже по этому признаку. Если результаты обоих ранжирований будут совпадать между собой, то мы можем констатировать положительную связь, если же они будут диаметрально противоположными — отрицательную.
Критерий Спирмена мы получаем, применив специальную формулу к нашим рангам, и он интерпретируется аналогично r-критерию Пирсона.
Как правило, проводя корреляционный анализ, мы анализируем сразу несколько переменных и по итогу получаем так называемую корреляционную матрицу. В ней записаны все вычисленные коэффициенты корреляции. Чтобы найти, какие переменные связаны с счастьем, достаточно найти нужный столбик и посмотреть, какие из этих коэффициентов являются значимыми.
Единственное — если вы находите несколько коэффициентов корреляции одновременно, то здесь опять возникает проблема множественных сравнений. Решить ее можно, применив всю ту же поправку Бонферрони: поделив критический p-уровень значимости (0,05) на количество вычисленных критериев (в нашем случае на 3) и сравнив наш p-уровень с получившимся значением (0,017).
К большому сожалению, корреляционный анализ позволяет установить только само наличие связи. Однако сказать, насколько сильно тот или иной фактор влияет на счастье, он не способен. Для этого используются более мощные методы, о которых мы поговорим в следующей главе.