Читать «Многоликий солитон» онлайн - страница 175
Александр Тихонович Филиппов
где
Уравнение «синус-Гордона» приведено в тексте на с. 181, формула (6.11). Обычно его записывают для функции
Как следует из (6.5), его односолитонное решение имеет вид
Два солитона описываются решением
солитон-антисолитон решением
u = 4 aгctg [
а бризер есть
Приведем еще солитонное решение уравнений цепочки Тоды:
где
α — произвольное число. Заметим, что дискретизованное уравнение КдФ имеет вид
а уравнения Тоды в континуальном пределе приводят к уравнению Буссинеска
которое иногда называют уравнением нелинейной струны.
Наконец, полезно знать простейшее уравнение нелинейной диффузии (Хаксли)
и его решение в виде уединенной волны
С другими уравнениями и их солитонными решениями читатель может познакомиться по книгам: Солитоны в действии/Под ред. К. Лонгрена, Э. Скотта. — М.: Мир, 1981;
4. В этой книге мы не касались математической теории солитонов. Ее основы были заложены в конце 60-х — начале 70-х годов. Развитие математической теории солитонов началось с работы Гарднера, Грина, Крускала и Миуры, в которой был предложен метод решения уравнения КдФ (1967 г.). В следующем году П. Лакс существенно обобщил этот метод. В 1971 г. В. Е. Захаров и А. Б. Шабат распространили идеи ГГKM на другие типы уравнений, в частности на нелинейное уравнение Шредингера. В том же году В. Е. Захаров и Л. Д. Фаддеев доказали полную интегрируемость уравнения КдФ, рассматривая его как бесконечномерную гамильтонову систему уравнений. Во всех этих работах разрабатывался так называемый метод «обратной задачи рассеяния», в котором решение нелинейных уравнений сводилось к решению некоторых линейных уравнений, связанных с квантово-механической теорией рассеяния. В том же году Р. Хирота предложил прямой метод построения солитонных решений различных уравнений, использующий более простой математический аппарат. С работы Абловица, Каупа, Ньюэлла и Сигура (1973 г.) началась систематизация интегрируемых уравнений и классификация различных типов солитонов, в частности была доказана полная интегрируемость уравнения «синус-Гордона» и начались поиски других солитонов. В 1974 — 1975 гг. был найден общий подход к построению точных периодических решений уравнения КдФ (С. П. Новиков и др.), опирающийся на глубокие математические результаты Римана, Абеля и Якоби. Развитие этого подхода недавно привело к установлению нетривиальных связей между математической теорией солитонов и теорией струн.