Читать «Многоликий солитон» онлайн - страница 173
Александр Тихонович Филиппов
Дуализм «частица-взаимодействие» — один из лейтмотивов физики, и в разные периоды на первый план выдвигалось либо одно либо другое понятие. Например, для Декарта и Максвелла главным в картине мира было взаимодействие, а для Ньютона и Лоренца — частицы. Впрочем, эти глубокие мыслители были весьма осторожны и сами не проводили резкой грани между частицами и взаимодействиями. Существовало также и стремление к единой теории частиц и взаимодействий (от Руджера Бошковича до Эйнштейна). По мере того как открывались переносчики взаимодействий, грань между частицами и взаимодействиями становилась все более зыбкой. Сейчас, после того как суперсимметрия объединяет в единые мультиплеты фермионы (традиционные частицы) и бозоны (традиционные агенты взаимодействий), мы более подготовлены к мысли, что по-настоящему фундаментальная теория устройства Вселенной должна быть единой теорией всех взаимодействий и всех частиц, из которых построено вещество. По-видимому, понятия частиц и взаимодействий как отдельных структурных элементов реальности потеряют смысл и должны быть заменены новыми структурными единицами, порождающими знакомые нам частицы и взаимодействия лишь в некотором приближении. Возможно, что такой структурной единицей окажется струна, а живущие на ней солитоны порождают многообразие известных и пока неизвестных нам частиц, из которых в конечном счете составлено невероятное многообразие удивительного мира, в котором мы живем.
* * *
На этом кончается наше путешествие. В таких случаях обычно принято писать заключение, делать выводы, подводить итоги. В книге о солитоне делать это, по-моему, рано. Солитон еще слишком молод и открыл нам лишь малую часть своих дарований. Да и может ли быть какой-нибудь конец у истории о бесконечно разнообразном детище бесконечной и изменчивой Природы... Продолжение?.. Да, продолжение истории обязательно будет! Только для этого понадобится работа молодого читателя этой книги, будущего создателя дерзких новых идей.
ПРИЛОЖЕНИЯ
1. Получим решение уравнения (4.7) геометрически, придав показательной функции
Построим на плоскости (
Тогда проекция точки
Если точка