Читать «Почему Е=mc²? И почему это должно нас волновать» онлайн - страница 124

Брайан Кокс

В самом общем виде сила тяжести в разных местах разная. Чем выше вы находитесь над уровнем Земли, тем она меньше, хотя разница между силой тяжести на уровне моря и на вершине Эвереста не такая уж и большая. На Луне сила тяжести гораздо меньше, поскольку масса Луны меньше массы Земли. Аналогично сила притяжения Солнца намного больше, чем сила притяжения Земли. Но где бы в Солнечной системе вы ни находились, сила тяжести в непосредственной близости от вас почти не меняется. Представьте, что вы стоите на земле. Гравитация у ваших ног будет немного сильнее, чем на уровне головы, но разница совсем невелика. Причем она будет меньше для низкорослого человека и больше для высокого. Вообразите крохотного муравья. Разница между силой тяжести у его ног и на уровне головы будет еще меньше. Давайте еще раз отправимся по проторенному пути мысленного эксперимента и станем рисовать себе все более и более мелкие объекты, вплоть до крохотного лифта, который настолько мал, что можно предположить, что сила тяжести в нем повсюду одинакова. В этом крохотном лифте обитают еще более крохотные физики, задача которых – ставить в нем научные эксперименты. А теперь представим, что этот крохотный лифт находится в состоянии свободного падения. В этом случае ни один из крохотных физиков даже не произнес бы слово «гравитация» своим писклявым голосом, так как обнаружить данный эффект посредством наблюдений в лифте невозможно. В описании мира с точки зрения наблюдений, сделанных этой группой крохотных падающих физиков, был бы один поразительный аспект: силы тяжести в нем просто нет. Но подождите-ка! Ведь нечто явно удерживает Землю на орбите вокруг Солнца. Это просто еще один хитрый трюк или в этом есть что-то важное?

Давайте на минуту оставим в стороне силу тяжести и пространство-время и вернемся к искривленной поверхности Земли. Пилот, планирующий перелет из Манчестера в Нью-Йорк, должен учитывать, что поверхность Земли имеет определенную кривизну. С другой стороны, когда вы переходите из столовой на кухню, вам не нужно помнить о кривизне поверхности Земли и вы вполне можете исходить из того, что эта поверхность плоская. Другими словами, геометрия этого участка поверхности очень близка к эвклидовой. По большому счету именно поэтому людям понадобилось так много времени, чтобы открыть тот факт, что Земля не плоская, а круглая: радиус кривизны гораздо больше, чем те расстояния, с которыми люди раньше имели дело. Давайте мысленно разделим поверхность Земли на небольшие квадратные участки, как показано на рис. 25. Каждый участок имеет почти плоскую поверхность, причем чем меньше размер участка, тем он более плоский. На каждом таком участке правит эвклидова геометрия: параллельные прямые не пересекаются и теорема Пифагора работает. Кривизна поверхности Земли становится очевидной, только когда мы пытаемся покрыть большие площади этой поверхности эвклидовыми участками. Для того чтобы построить искривленную поверхность сферы, необходимо соединить вместе огромное множество таких участков.