Читать «Почему Е=mc²? И почему это должно нас волновать» онлайн - страница 122

Брайан Кокс

Гладкий мяч искривлен одинаково повсюду – это совершенно очевидно. Однако этого нельзя сказать о мяче для гольфа, имеющем углубления. Поверхность Земли также не идеальная сфера. При ближайшем рассмотрении мы видим на ней долины и впадины, горы и океаны. Закон для определения расстояния между двумя точками на поверхности Земли один и тот же повсюду только в приближенном варианте. Для получения более точного ответа нам необходимо знать, как изменяется холмистая поверхность Земли, когда мы перемещаемся по горам и долинам между начальным и конечным пунктом путешествия. Могут ли в пространстве-времени быть такие углубления, как на мяче для гольфа, или горы и долины, как на поверхности Земли? Может ли пространство-время «искривляться» в разных местах?

Когда мы впервые вывели уравнение расстояния в пространстве-времени, создалось впечатление, что мы не можем его менять в разных местах. Фактически мы утверждали, что точная форма уравнения расстояния навязана нам ограничениями причинно-следственных связей. Однако мы все же приняли одно важное предположение: пространство-время повсюду одинаково. Есть веские основания утверждать, что это предположение работает на удивление хорошо и что экспериментальные данные говорят главным образом в его пользу, поскольку именно оно сыграло важнейшую роль в получении формулы E = mc². Но, может быть, мы были недостаточно внимательны? Может ли пространство-время быть не совсем одинаковым в разных местах и может ли это повлечь за собой поддающиеся наблюдению последствия? Ответ – твердое «да». Для того чтобы прийти к такому заключению, давайте еще раз последуем по пути Эйнштейна, которому понадобилось десять лет тяжелого труда, прежде чем он сформулировал еще одну грандиозную теорию: общую теорию относительности.