Читать «Истина в пределе. Анализ бесконечно малых» онлайн - страница 17

Антонио Дуран

Кроме того, недостатки этого метода вскоре удалось преодолеть. Так, Эванджелиста Торричелли (1608—1647), друг Кавальери, мастерски использовал этот метод и нашел различные строгие доказательства в стиле древнегреческих математиков, а Ферма, Паскаль и Валлис, а также Роберваль (1602—1675) и его метод бесконечно малых преобразовали геометрический метод Кавальери в алгебраический, благодаря чему он стал более общим и его стало возможно применять более широко.

Фрагмент мраморной статуи Бонавентуры Кавальери, хранящейся в Академии искусств Милана. Ученый изображен размышляющим над бесконечно малыми величинами.

Перед рассказом о том, как Валлис усовершенствовал метод Кавальери, остановимся на личности Грегуара де Сен-Венсана (1584—1667), иезуита, ученика Христофора Клавия и придворного учителя короля Испании Филиппа IV. По поручению папы Григория XIII Сен-Венсан разработал новый календарь и поощрял занятия математикой среди иезуитов. Он совершил значимые открытия во многих областях. Так, он расширил геометрический метод интегрирования, который позднее оказал влияние на работы Паскаля. Однако эта работа была опубликована с заметным опозданием — лишь в 1647 году, хотя была завершена в конце 1620-х годов. К тому времени Сен-Венсан стал уделять больше внимания алгебраическим методам, разработанным под влиянием аналитической геометрии. Он также был автором работы о геометрических рядах, которую Гюйгенс рекомендовал к изучению Лейбницу. Результаты, полученные в этой работе, Сен-Венсан использовал в обсуждении знаменитой апории Зенона об Ахиллесе и черепахе. Он указывал, что Зенон не учел, что отрезки, которые нужно пройти Ахиллесу, образуют геометрическую прогрессию со знаменателем 1/2 и, несмотря на то что эта прогрессия имеет бесконечное множество членов, ее сумма является конечной. Однако наиболее значимым вкладом Сен-Венсана, на наш взгляд, является обнаружение связи между логарифмами и площадью фигуры, ограниченной гиперболой. Выражаясь языком той эпохи, он доказал, что если длина интервалов возрастает геометрически, то площадь фигуры увеличивается арифметически, что показано на иллюстрации.

Теперь пришло время рассказать о Джоне Валлисе (1616—1703), одном из основателей Лондонского королевского общества и главе кафедры геометрии в Оксфорде с 1649 года. Возможно, этот пост был пожалован ему за то, что он расшифровал перехваченные сообщения роялистов во время Гражданской войны в Англии. В библиотеке Валлиса были двуязычные издания трудов греческих авторов (на латинском и греческом языках), в том числе Архимеда. Валлис также был автором грамматики английского языка (1653).

Он видоизменил метод неделимых Кавальери, присвоив им числовые значения. Таким образом, на смену геометрическим преобразованиям при вычислении площадей фигур пришли арифметические расчеты. Кроме того, Валлис ввел примитивную операцию, подобную переходу к пределу. Валлис достаточно свободно использовал бесконечные процессы (стоит напомнить, что именно он является автором знака бесконечности ∞, который мы используем и поныне), сделав тем самым еще один шаг от безупречной логической строгости к открытию новых, более мощных методов. Степень этих изменений можно увидеть, если обратить внимание на названия трудов Кавальери и Валлиса: труд Кавальери носил название Geometria indivisibilibus continuorum nova quadam ratione promota, книга Валлиса — Arithmetica infinitorum. Труд Валлиса отличается общим характером арифметических и алгебраических расчетов по сравнению с частными геометрическими доказательствами Кавальери; он также полностью использует широкие возможности бесконечности, в то время как Кавальери вынужден формулировать строгие и логичные доказательства в древнегреческом стиле, что, безусловно, накладывало свои ограничения. Показательным для того времени является следующий комментарий Валлиса относительно недостаточной логической строгости его метода: «Этот метод является в высшей степени еретическим, однако его можно подтвердить с помощью хорошо всем известного метода вписанных и описанных фигур, что излишне, поскольку частые повторения отвлекают читателя. Любой сведущий в этом предмете может выполнить такое доказательство». Это один из немногих случаев, когда в книге фигурирует термин «доказательство». Будучи под впечатлением от созданного им арифметического метода, с помощью неполной индукции и интуиции Валлис смог рассчитать площадь всех парабол вида xr, где r — любое рациональное число, не равное —1. Более того, ему удалось найти удивительную формулу для расчета числа π: