Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 303

Пекка Теерикор

Рис. 30.9. Современные строматолиты в озере Тетис (Австралия). Найдены подобные окаменевшие строматолиты возрастом более 3 млрд лет. С разрешения Ruth Ellison, Glass Zebra Photography.

Влияние жизни на атмосферу и климат.

После образования океанов первая настоящая атмосфера Земли, по-видимому, в основном состояла из СO2, Na, Н2O, СО и Н2. Кислорода не было. Точно неизвестно, но сейчас считается, что давление атмосферы в 10–20 раз превышало современное и в нем преобладала двуокись углерода (СO2). Но как только началась эрозия силикатных пород, количество двуокиси углерода начало сокращаться. Под влиянием эрозии из кальцийсодержащих силикатов земной коры начал выделяться кальций и перемещаться в моря. Газ СO2 растворялся в морской воде, вступал в реакцию с кальцием, и образовавшиеся карбонаты осаждались на дне моря. Поэтому количество двуокиси углерода в атмосфере постепенно уменьшалось.

После окончания интенсивной бомбардировки новая развивающаяся биосфера начала влиять на атмосферу. Многие из ранних форм жизни, использовавшие водород органического или неорганического происхождения, с помощью него восстанавливали CO2 в метан (СН4). Похоже, что метан, производившийся одноклеточными микробами архея, стал важнейшим парниковым газом з млрд лет назад. В отсутствии кислорода содержание метана в атмосфере повысилось, по-видимому, до весьма серьезной концентрации: 100-1000 ppm (частей на миллион), тогда как современный воздух содержит менее 2 ppm СН4 и 390 ppm CO2. Являясь очень сильным парниковым газом, метан вызвал мощное глобальное потепление: температура повысилась до 70–85 °C, несмотря на то что Солнце светило слабее, чем сегодня. Высокий уровень метана вызывал также смог, защищавший поверхность Земли от ультрафиолетовых лучей.

Разные виды микробов были способны восстанавливать или окислять соединения углерода, серы и азота. Таким образом, биосфера могла осуществлять круговорот этих элементов между их органическими и неорганическими формами и изменять состав атмосферы. В производстве биологической энергии произошла революция, когда цианобактерии образовали фотосистемы, содержащие достаточно сильно окисляющие комплексы, которые могли использовать воду как донор электронов для реакций фотосинтеза. Эта реакция отрывает два электрона у молекулы воды и переносит их путем фотосинтеза (врезка 30.1), выделяя при этом в виде отхода кислород. По геологическим данным, первые признаки атмосферного кислорода появились около 2,2 млрд лет назад. Даже небольшое количество (1–2%) кислорода могло эффективно уничтожить сильный парниковый газ метан. Первое появление кислорода в воздухе привело к суровому глобальному ледниковому периоду (гипотеза «Заснеженной Земли», Snowball Earth). Вторая серия ледниковых периодов случилась 800–600 млн лет назад, как раз перед кембрийским периодом, когда уровень атмосферного кислорода вырос до современного значения 21 %.