Читать «Объективное знание. Эволюционный подход» онлайн - страница 36
Карл Раймунд Поппер
Истинностное содержание тавтологий (логически истинных высказываний) равно нулю: оно состоит только из тавтологий. Все остальные высказывания, включая и все ложные высказывания, имеют ненулевое истинностное содержание.
Класс ложных высказываний, вытекающих из данного высказывания, — подкласс его содержания, состоящий в точности из тех высказываний, которые ложны, — можно было бы назвать (как бы из вежливости) его «ложностным содержанием», однако он не имеет характерных свойств «содержания», или класса следствий по Тарскому. Это не дедуктивная система в смысле Тарского, поскольку из любого ложного высказывания можно логически вывести истинные высказывания. (Дизъюнкция ложного и любого истинного высказывания — пример одного из тех высказываний, которые являются истинными и следуют из ложного высказывания).
В оставшейся части этого раздела я намереваюсь разъяснить интуитивные идеи (ideas) истинностного содержания и ложностного содержания несколько более подробно, чтобы подготовить читателя к более развернутому обсуждению идеи правдоподобности. Дело в том, что правдоподобность высказывания будет определена как возрастающая сростом его истинностного содержания и убывающая с ростом его ложностного содержания. При этом я буду широко использовать идеи Альфреда Тарского, особенно его теорию истины и его теорию классов следствий и дедуктивных систем (обе эти теории рассматриваются в примечании 18 к этому разделу; более подробное рассмотрение этого вопроса см. в главе 9 настоящей книги).
Есть возможность так определить ложностное содержание некоторого высказывания а (отличное от класса ложных высказываний, следующих из а),чтобы (а) это было содержание (или класс следствий в смысле Тарского), (Ь) оно содержало все ложные высказывания, следующие из а, и (с) оно не содержало бы никаких истинных высказываний. Для этого нужно только релятивизировать понятие содержания, что можно сделать вполне естественным образом.
Будем называть содержание, или класс следствий, высказывания а именем 'А' (так что в общем случае X есть содержание высказывания х). Будем вместе с Тарским называть содержание логически истинного высказывания именем 'L'. L есть класс всех логически истинных высказываний: он есть общее содержание всех содержаний и всех высказываний. Мы можем сказать, что L есть нулевое содержание.
Релятивизируем теперь идею содержания, так чтобы мы могли говорить об относительном содержании высказывания а при данном контексте Y, и будем обозначать это относительное содержание символом 'a, Y'. Это класс всех высказываний, выводимых из a в присутствии Y, но не из одного Y.
Мы сразу же видим, что если A есть содержание высказывания a, то при релятивизированном способе записи A=a,L; это значит, что абсолютное содержание A высказывания a равно относительному содержанию a, если задана «логика» (= нулевое содержание).
Более интересным случаем относительного содержания предположения (conjecture) а является случай a, Bt, где Bt — наше фоновое знание в момент времени t, то есть знание, которое в момент t принимается без обсуждения. Мы можем сказать, что в новом предположении а интересным является прежде всего его относительное содержание а, B, то есть та часть содержания а.В , которая выходит за пределы В.Точно так же, как содержание логически истинного высказывания равно нулю, так относительное содержание предположения а при данном В равно нулю, если а содержит только фоновое знание и ничего более. В общем случае мы можем сказать, что если а принадлежит Б, или, что то же самое, если А⊂В, то а, В = 0. Таким образом, относительным содержанием высказывания x, Y является та информация, которой х в присутствии Y превосходит Y.