Читать «Придирки оксфордского прохожего» онлайн - страница 4
Льюис Кэрролл
Теперь мы имеем уравнение :
φ(HGL) = 0 + C + J + H + S + P + J.
Такое суммирование дало минимальное значение пая; оно, однако, рассматривалось лишь как первое приближение, и вся процедура повторялась под давлением EAF, что дало для пая частное максимальное значение. Последовательно повышая EAF, в конце получили результат:
π = S = 500,00000.
Данный результат значительно отличается даже от величины в 400,00000; но не должно возникнуть сомнений, что данная процедура выполнена корректно и что весь учёный мир теперь можно с окончательным решением этой труднейшей проблемы.
ДИНАМИКА ПАРТИЙНОЙ ГОРЯЧКИ
Вступление
Был чудный осенний вечер; пока земля уворачивалась от огромного светила, слепившего её с запада, в атмосфере началось великолепное действо оптической аберрации, и как раз об эту пору вдали показались две прямые, пролагавшие свой утомительный путь по плоской поверхности. Из них старшая благодаря длительной практике не худо справлялась со столь мучительным для более молодой и импульсивной линии делом — ровно лежать между своими крайними точками; молодая же в девической порывистости непрестанно отклонялась и принимала вид то гиперболы, то какой-нибудь иной столь же романтичной и необузданной кривой. Обеим довелось жить и любить; судьба и встрявшая в их отношения поверхность по сию пору удерживали их порознь, но теперь этому пришёл конец: их пересекла некая прямая, образовав при этом два внутренних угла, в сумме меньших чем два прямых . Мгновение было незабываемым, и пока они продолжали своё путешествие, вдоль плоскости изохронными звуковыми волнами дрожал шёпот: «Да! По продолжении мы, наконец, встретимся!» (См. Курс математики Якоби, гл. 1.)
Мы начали с вышеприведённой цитаты, поскольку она является яркой иллюстрацией того преимущества, которое даёт введение человеческого элемента в ту область Математики, что ранее лишь наводила скуку. Кто скажет, какие зародыши романтических приключений, до сих пор недоступные наблюдению, не могут залегать в её глубине? Кто способен утверждать, что параллелограмм, по поводу которого, только что рассчитанного нами в нашем невежестве и начерченного на бумаге, мы заявили во всеуслышание, будто нам известен полный набор его свойств, не может с рождения пылать страстью к внешним углам, сочувствовать внутренним или угрюмо роптать на собственную неспособность вписаться в круг? Какому математику из когда-либо склонявшихся над гиперболой, чтобы раскромсать несчастную кривую секущими прямыми в попытке доказать некое свойство, которое в конце концов, возможно, есть просто-напросто клевета, не чудилось под конец, будто обиженная линия в молчаливом упрёке воздевает свои асимптоты или с презрительной жалостью мигает ему своим единственным фокусом?
Подобные вопросы породили нижеследующие странички. Пусть неотделанные и торопливые, они всё же более полно, чем это пытались сделать другие авторы прежде, выставляют напоказ некоторые явления, происходящие от света, или «просвещения», рассматриваемого как особая сила.