Читать «Критическая масса, как одни явления порождают другие» онлайн - страница 243
Филипп Болл
Возвращаясь к рассматриваемой проблеме, отметим, что именно так можно сформулировать и задачу об энергии конфигурации спинов в упоминавшихся спиновых стеклах, когда их каждой конкретной комбинации (т.е. полной записи всех положений «вверх» и «вниз») соответствует некая точка на многомерной решетке. Число измерений решетки равно числу спинов в системе, и каждая конфигурация характеризуется собственной общей энергией, значение которой мы можем точно вычислить, суммируя все взаимодействия между парами соседних спинов (в каждой конкретной модели часть взаимодействий оказывается энергетически выгодной, часть — нет).
Следующим этапом моделирования становится введение еще одной оси, по которой откладываются вычисленные по этой модели значения общей энергии (основного параметра моделирования) системы в данной точке решетки. Общее решение задачи становится гораздо более удобным для анализа и наглядным, когда многомерная решетка сводится к двумерной, в результате чего картина приобретает привычный трехмерный вид, где каждая точка на плоскости соответствует конкретной конфигурации спинов, а высота — энергии этой конфигурации. Соединив для наглядности эти точки аппроксимирующей поверхностью, мы получаем некую топологическую карту, показывающую, как меняется энергия при изменении конфигурации спинов (рис. 12.2, б). Долины на такой карте соответствуют состояниям, когда небольшие флуктуации (т. е. перестановка небольшого числа спинов) очень слабо меняют общую энергию, что позволяет говорить о «локальной» устойчивости системы. Легко заметить, что любое движение из таких участков, соответствующее подъему по ландшафту, приводит к повышению энергии системы.
Для реальных спиновых стекол энергетический ландшафт обычно бывает очень изрезанным или неровным, т. е. содержит множество долин с относительно близкими значениями минимумов общей энергии (рис. 12.3,
Рис. 12.3. Энергетический ландшафт спинового стекла (
ности нескольких спинов в этом случае приводит лишь к незначительному росту энергии, так что в окрестности минимумов этих долин системы остаются весьма устойчивыми.
Напомним, что модель Изинга применима также к флюидам, которые могут превратиться в газ или жидкость. Таким образом, мы можем представить себе энергетический ландшафт для системы частиц, в которой координаты соответствуют различным пространственным конфигурациям частиц, а высота соответствует энергии состояний, определяемых силами взаимодействия между частицами. А это уже эквивалентно модели Аксельрода для союзов, в которых «частицы» собираются в кластеры, которые испытывают некоторую фрустрацию из-за внутренних противоречий.