Читать «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» онлайн - страница 11
Владимир Георгиевич Брюков
Шаг 3. Вывод итогов
На заключительном этапе выбираем в параметрах вывода (окно РЕГРЕССИЯ) опцию ВЫХОДНОЙ ИНТЕРВАЛ, в которой указываем соответствующую ячейку Excel ($Н$2), далее щелкаем по надписи ОК и получаем ВЫВОД ИТОГОВ (см. рис. 2.1, где можно увидеть все заданные нами параметры уравнения регрессии). В случае необходимости вывод итогов можно получить на отдельном листе (опция НОВЫЙ РАБОЧИЙ ЛИСТ) или в новой книге Excel (опция НОВАЯ РАБОЧАЯ КНИГА).
Результаты решения уравнения регрессии, которые в программе Excel выдаются в виде единой таблицы под заголовком ВЫВОД ИТОГОВ, у нас представлены в виде трех блоков (табл. 2.2–2.4). Так, в табл. 2.2 сгенерированы результаты по регрессионной статистике, в табл. 2.3 дается дисперсионный анализ, а в табл. 2.4 оценивается статистическая значимость коэффициентов регрессии.
Параметры, представленные в табл. 2.2, характеризуют уровень аппроксимации фактических данных, полученный с помощью уравнения регрессии. Так, параметр МНОЖЕСТВЕННЫЙ R обозначает коэффициент множественной корреляции R, который характеризует тесноту связи между результативным признаком Y и факторами переменных Д, Х2…., Хn. Этот коэффициент изменяется в пределах от 0 до 1, причем чем ближе к 1, тем теснее корреляционная связь между переменными, включенными в уравнение регрессии. Коэффициент множественной корреляции равен квадратному корню, извлеченному из коэффициента детерминации R2, который также приводится в регрессионной статистике. Коэффициент множественной корреляции R находят по формуле:
Зная величину коэффициента корреляции R, можно дать качественную оценку силы связи между зависимой и независимыми переменными, включенными в уравнение (2.5). С целью классификации силы связи обычно используют шкалу Чеддока (табл. 2.1).
Если между переменными существует функциональная связь, то R= 1, а если корреляционная связь отсутствует, то R = 0. Поскольку в табл. 2.2 коэффициент множественной корреляции Нравен 0,8456, то, согласно шкале Чеддока, связь между переменными, включенными в уравнение регрессии, можно считать высокой. Следует также заметить, что если коэффициент множественной корреляции меньше 0,7, то это означает, что величина коэффициента детерминации R2 будет меньше 50 %, а потому регрессионные модели с таким коэффициентом детерминации не имеют большого практического значения.
Однако самым важным является другой параметр регрессионной статистики — R-КВАДРАТ (в табл. 2.2 он выделен шрифтом), обозначающий коэффициент детерминации R2. Коэффициент детерминации R2 характеризует долю дисперсии результативного признака У, объясняемую уравнением регрессии, в общей дисперсии результативного признака. Коэффициент детерминации R2 находится по следующей формуле:
Коэффициент детерминации R2, как и коэффициент множественной корреляции R, изменяется в пределах от нуля до единицы. Если R2 равен единице, то доля объясненной дисперсии составляет 100 %, а следовательно, связь между зависимой переменной Y и независимыми переменными Х1, Х2…., X1 носит функциональный характер. В том случае, когда R2 равен нулю, какая-либо связь между переменными в этом уравнении регрессии отсутствует.