Читать «Teopeмa Гёделя» онлайн - страница 3

Джеймс Рой Ньюмен

Детали доказательств теорем Гёделя из его знаменитой работы слишком трудны для того, чтобы понять их, не имея основательной математической подготовки. Но общую идею этих доказательств и значение следующих из них выводов вполне могут уяснить и читатели, обладающие совсем скромными познаниями в области математики и логики. Для этого читателю понадобятся разве лишь самые элементарные факты и понятия современной математики и формальной логики. Именно краткому знакомству с этим ограниченным запасом фактов и посвящены ближайшие четыре раздела нашего очерка.

2

Проблема непротиворечивости

Для XIX столетия характерна резкая интенсификация и расширение проблематики математических исследований. Были решены многие важные математические проблемы, не поддававшиеся усилиям лучшие мыслителей прошлых времен. Возникли совершенно новые математические дисциплины. В различных областях математики были выдвинуты новые основополагающие принципы, а применение старых принципов стало гораздо более плодотворным благодаря их пересмотру с учетом новой, более совершенной техники математического мышления. Вот простой пример. Еще греческие математики выдвинули три задачи из области элементарной геометрии: разделить на три части произвольный угол при помощи только циркуля и линейки; построить куб, объем которого был бы вдвое больше объема данного куба; построить квадрат, площадь которого равнялась бы площади данного круга, Более двух тысяч лет эти задачи не поддавались решению, пока, наконец, в XIX столетии не было строго доказано, что предписываемые в них построения вообще нельзя осуществить. Эти результаты, интересные и сами по себе, вызвали глубокий интерес к изучению природы понятия числа и строения числового континуума (поскольку выяснилось, что для решения упомянутых задач недостаточны числа, являющиеся корнями уравнений, хорошо изученных еще античными математиками). Плодом этих исследований явились строгие определения, на основе которые удалось построить теории отрицательных, комплексных и иррациональных чисел. Была построена на прочной логической основе и общая теория действительных чисел. Возникла совершенно новая ветвь математики — теория бесконечных множеств и так называемых трансфинитных («бесконечных») чисел.

Но, пожалуй, наиболее важным достижением XIX века явилось решение еще одной задачи, также восходящей еще к грекам, которая с тех пор оставалась без ответа. В числе аксиом, на базе которых строилась евклидова систематизация геометрии, имеется так называемая аксиома параллельности. В предложенной Евклидом формулировке эта аксиома равносильна утверждению (хотя и не совпадает с ним), что через точку, лежащую вне данной прямой, можно провести единственную прямую, параллельную данной прямой. Еще античным математикам эта аксиома отнюдь не казалась самоочевидной. Поэтому они пытались доказать ее в качестве следствия из остальных аксиом Евклида, которые, напротив, представлялись им совершенно очевидными. Можно ли, однако, действительно получить искомое доказательство для аксиомы параллельности? Поколения математиков безуспешно пытались ответить на этот вопрос. Но неоднократные неудачи попыток построения искомого доказательства не означали еще, что никто не преуспеет в этом деле больше, чем в важной для человечества проблеме изобретения безотказно и на все времена действующего средства от насморка. Такое положение вещей продолжалось до середины XIX столетия — до тех пор, пока в работах Гаусса, Бойаи, Лобачевского, Римана и других математиков не была доказана невозможность вывода аксиомы параллельности из остальных аксиом евклидовой геометрии. Этот результат имел громадное значение для понимания природы нашего мышления. В первую очередь он привлек внимание к тому поразительному факту, что можно доказать в качестве теоремы невозможность доказательства некоторых утверждений средствами данной системы.