Читать «Teopeмa Гёделя» онлайн - страница 25

Джеймс Рой Ньюмен

Легко видеть, что классы K1 и K2 можно понимать соответственно как класс истинных и класс ложных высказываний. Мы, однако, намеренно воздерживались от этой терминологии в ходе самого доказательства (хотя не раз, комментируя отдельные ее шаги, подразумевали возможность ее использования), чтобы подчеркнуть то обстоятельство, что наше доказательство в принципе не нуждается в ссылках на какую бы то ни было интерпретацию формул исчисления высказываний, хотя понять его как следует легче именно при таком «переводе» на содержательный язык.

В заключение следует сказать еще об одной важной проблеме, относящейся к исчислению высказываний. Мы установили, что каждая теорема этого исчисления является тавтологией, т. е. — если выражаться в терминах неоднократно упоминаемой выше содержательной интерпретации — логической истиной, «законом логики». Естественно задать в известной мере и обратный вопрос: каждое ли логически истинное высказывание, выразимое на языке нашего исчисления (т. е. каждая ли тавтология), является теоремой данного исчисления (выводимой из его аксиом)? И на этот вопрос можно дать положительный ответ; но доказательство такого факта слишком длинно, чтобы приводить его здесь. Но нам хотелось бы обратить внимание на одно обстоятельство, не имеющее отношения к самому доказательству: дело в том, что результат этот свидетельствует о достаточности выбранных нами аксиом для получения всех тавтологичных формул — иными словами, всех логически истинных высказываний, выразимых на языке исчисления высказываний. Системы аксиом, обладающие таким свойством, принято называть «полными».

Вопрос о полноте той или иной системы аксиом представляет, как правило, большой интерес. В самом деле, основным стимулом для аксиоматизации различных разделов математики бывает стремление найти подходящий перечень исходных допущений, из которых затем можно было бы вывести все истинные предложения данной области. Скажем, когда Евклид формулировал некоторую аксиоматизацию элементарной геометрии, он старался отобрать аксиомы таким образом, чтобы из них можно было вывести все истинные геометрические утверждения, не только уже известные в то время, но в принципе и любые другие, которые можно было бы научиться доказывать когда-либо в будущем.

Помимо прочего, Евклид обнаружил поразительную проницательность своей трактовкой знаменитой аксиомы параллельности как допущения, логически не зависящего от остальных аксиом предложенной им системы. Лишь спустя много времени удалось доказать, что эта аксиома действительно не может быть выведена из остальных аксиом Евклида, т. е. что без аксиомы параллельности эта система аксиом неполна.

До недавнего времени считалось более или менее само собой разумеющимся, что для каждой конкретной области математики можно подобрать полную систему аксиом. В частности, математики были убеждены, что система аксиом, предложенная для аксиоматизации арифметики натуральных чисел, полна или во всяком случае может быть пополнена (сделана полной) добавлением к исходному перечню еще конечного списка аксиом. Одним из величайших открытий Гёделя и было как раз обнаружение невозможности такой полной аксиоматизации арифметики.