Читать «Излучение. Волны. Кванты» онлайн - страница 65

Ричард Фейнман

Пусть теперь имеется один-единственный электрон; к чему приложена возникающая в нем сила сопротивления? Старая классическая теория представляла электрон в виде маленького шарика, различные части которого взаимодействуют друг с другом. В результате запаздывания при распространении взаимодействия внутри этого шарика сила оказывается несколько смещенной по фазе относительно скорости движения. Мы знаем, что, когда электрон покоится, «действие равно противодействию». Поэтому внутренние силы уравновешиваются и результирующая сила равна нулю. Но в ускоренном электроне сила, действующая на переднюю половинку со стороны задней, из-за запаздывания не равна силе, действующей в обратном направлении. Запаздывание взаимодействия во времени нарушает баланс сил, и в результате вся система как бы «наступает сама себе на шнурки». Такое объяснение возникновения радиационного сопротивления у движущегося электрона встретилось со многими трудностями и, прежде всего потому, что по современным представлениям электрон вовсе не «маленький шарик»; проблема так и осталась нерешенной по сей день. Тем не менее, даже не зная механизма действия сил, мы можем точно вычислить силу сопротивления излучения, т. е. затраты энергии на ускорение заряда.

§ 2. Интенсивность излучения

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного ускорения, считая, однако, движение нерелятивистским. Когда ускорение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздывающего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию e0cE2, проходящую через единичную площадку за 1 сек.

Величина e0c часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна 1/e0с =377 ом. Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.

С помощью формулы (29.1) для электрического поля мы получаем

(32.2)

где S — мощность на 1 м2, излучаемая под углом q. Как уже отмечалось, S обратно пропорционально расстоянию. Интегрируя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим S на площадь полоски сферы, тогда мы получим поток энергии в интервале угла dq (фиг. 32.1). Площадь полоски вычисляется следующим образом: если радиус равен r, то толщина полоски равна rdq, а длина 2prsinq, поскольку радиус кольцевой полоски есть rsinq. Таким образом, площадь полоски равна