Читать «Излучение. Волны. Кванты» онлайн - страница 55
Ричард Фейнман
Чтобы понять, с чем мы имеем дело, найдем, каким должно быть «поправочное поле» Еа, чтобы полное поле в точке Р выглядело как поле источника, замедлившееся при прохождении через стеклянную пластинку. Если бы пластинка никак не влияла на поле, волна распространялась бы направо (по оси
2) по закону
(31.3)
или, используя экспоненциальную запись,
(31.4)
А что произошло бы, если бы волна проходила через пластинку с меньшей скоростью? Пусть толщина пластинки есть Dz. Если бы пластинки не было, то волна прошла бы расстояние Dz за время Dz/c. А поскольку кажущаяся скорость распространения есть c/n, то потребуется время nDz/c, т. е. больше на некоторое добавочное время, равное Dt=(n-l) Dz/c. За пластинкой волна снова движется со скоростью с. Учтем добавочное время на прохождение через пластинку, заменив t в уравнении (31.4) на (t-Dt), т. е. [t-(n-1)Dz/c]. Таким образом, если поставить пластинку, то формула для волны должна приобрести
(31.5)
Эту формулу можно переписать еще и по-другому:
(31.6)
откуда заключаем, что поле за пластинкой получается умножением поля, которое было бы при отсутствии пластинки (т. е. Es), на ехр[-iw(n-1)Dz/c]. Как мы знаем, умножение осциллирующей функции типа eiwt на еiq означает изменение фазы колебаний на угол q, возникающее из-за задержки при прохождении пластинки. Фаза запаздывает на величину w(n-1)Dz/c (именно запаздывает, поскольку в экспоненте стоит знак минус).
Мы говорили раньше, что пластинка добавляет поле Еа к первоначальному полю ES=E0ехр[iw(t-z/c)], а вместо этого нашли, что действие пластинки сводится к умножению поля на фактор, сдвигающий фазу колебаний. Однако здесь нет противоречия, поскольку тот же результат можно получить, прибавив подходящее комплексное число. Это число особенно просто найти для малых Dz, так как ех при малых x с большой точностью равно (1+x).
Тогда можно записать
(31.7)
Подставляя это равенство в (31 6), получаем
(31.8)
Первый член в этом выражении есть просто поле источника, а второй следует приравнять Еа — полю, создаваемому осциллирующими зарядами пластинки справа от нее. Поле Еа выражено здесь через показатель преломления n; оно, разумеется, зависит от напряженности поля источника.
· · ·
Смысл сделанных преобразований легче всего понять с помощью диаграммы комплексных чисел (см. фиг. 31.3). Отложим сперва Es (z и t выбраны на рисунке такими, что Es лежит на действительной оси, но это не обязательно). Задержка при прохождении пластинки приводит к запаздыванию фазы Es, т. е. поворачивает Es на отрицательный угол. Это все равно, что добавить малый вектор Еа, направленный почти под прямым углом к Es. Именно такой смысл имеет множитель (-i) во втором члене (31.8). Он означает, что при действительном Es величина Еа отрицательная и мнимая, а в общем случае Es и Ёа образуют прямой угол.