Читать «Излучение. Волны. Кванты» онлайн - страница 2

Ричард Фейнман

В этой главе мы ограничимся той областью, для которой эффективна геометрическая оптика и, как будет видно в дальнейшем, длина волны и фотонный характер света роли не играют. Мы даже не зададим вопроса, а что такое свет, и только опишем его поведение в масштабе длин и времен, много больших, чем некоторые характерные величины. Из сказанного ясно, что речь пойдет об очень грубом приближении, потом нам придется «отучаться» от изложенных здесь методов. Но отучимся мы легко, потому что почти сразу перейдем к более точному анализу.

Геометрическая оптика, хотя и является приближением, представляет огромный интерес с технической и исторической точек зрения. На истории этого вопроса мы намеренно остановимся подробнее, чтобы дать представление о развитии физической теории или физической идеи вообще.

Начнем с того, что свет знаком каждому и известен с незапамятных времен. Возникает первая проблема: каков механизм видения света? Теорий было много, но в конце концов, они свелись к одной: существует нечто, попадающее в глаз при отражении от предметов. Эта идея существует уже давно и столь привычна, что теперь даже трудно себе представить другие идеи, предложенные, однако, весьма умными людьми, например, что нечто выходит из глаза и чувствует окружающие предметы. Были и другие важные наблюдения: свет распространяется из одной точки в другую по прямой линии, если ничто ему не препятствует и лучи света не взаимодействуют друг с другом. Иными словами, свет распространяется в комнате во всевозможных направлениях, но тот луч, который перпендикулярен направлению нашего взгляда, не воздействует на лучи, идущие к нам от какого-либо предмета. В свое время это был сильнейший аргумент против корпускулярной теории света и его использовал Гюйгенс. Но если представить себе свет в виде пучка летящих стрел, то как могли бы тогда другие стрелы легко пронизывать его? На самом деле ценность таких схоластических доказательств весьма сомнительна. Всегда можно сказать, что свет состоит именно из таких стрел, которые свободно проходят друг через друга!

§ 2. Отражение и преломление

Все сказанное дает представление об основной идее геометрической оптики. Теперь перейдем к ее количественному описанию. До сих пор мы разбирали случай, когда свет распространяется между двумя точками по прямой линии. Посмотрим теперь, что происходит, когда свет на своем пути наталкивается на какой-то объект (фиг. 26.1). Простейший объект — это зеркало, и в этом случае мы знаем такой закон: свет, попадая на зеркало, не проходит через него, а отражается и снова уходит по прямой линии, причем направление прямой меняется при изменении наклона зеркала. Еще в древности люди были заняты вопросом: каково соотношение между этими двумя углами? Это очень простое соотношение, и найдено оно было давным-давно. Падающий на зеркало луч после отражения движется по такому пути, что углы между каждым лучом и зеркалом равны. По ряду соображений углы удобно отсчитывать от нормали к поверхности зеркала. Тогда так называемый закон отражения гласит: