Читать «Излучение. Волны. Кванты» онлайн - страница 5
Ричард Фейнман
Покажем теперь, что из принципа наименьшего времени вытекает закон Снелла для преломления. Мы должны, конечно, что-то предположить относительно скорости света в воде. Будем считать, что скорость света в воде меньше скорости света в воздухе, и отношение второй скорости к первой обозначим через n.
Наша задача по-прежнему состоит в том, чтобы на фиг. 26.4 попасть из точки А в В за наименьшее время. Чтобы убедиться, что путь по прямой здесь не самый быстрый, представим себе следующую ситуацию: хорошенькая девушка падает из лодки в воду в точке В и кричит, просит спасти. Линия X — это берег. Вы находитесь на суше в точке А и видите, что произошло, вы умеете плавать и умеете бегать. Но бегаете вы быстрее, чем плаваете. Что вам делать? Бежать по прямой к берегу? (Конечно!) Но, немного поразмыслив, вы поймете, что выгоднее пробежать несколько дольше по берегу, чтобы уменьшить ваш путь в воде, потому что в воде вы будете двигаться гораздо медленнее. (Рассуждая таким образом, лучше всего было бы заранее тщательно вычислить путь!) Во всяком случае, давайте попытаемся показать, что окончательное решение задачи — это путь АСВ, который занимает из всех возможных наименьшее время. Если этот путь кратчайший по времени, то любой другой окажется длиннее. Поэтому если отложить на графике зависимость времени от положения точки X, получится кривая, похожая на изображенную на фиг. 26.5, где точка С соответствует наименьшему времени.
Фиг. 26.4. Иллюстрация принципа Ферма для случая преломления.
Фиг.26.5 Наименьшее время получается при выборе точки С.
Соседние точки приводят примерно к такому же времени прохождения.
Это означает, что для точек X вблизи С в первом приближении время прохождения практически одинаковое, так как в точке С наклон кривой равен нулю. Итак, наш способ найти искомый путь сводится к требованию, чтобы при небольшом изменении положения точки время прохождения не менялось. (Конечно, возникнут бесконечно малые изменения времени второго порядка, и они должны быть положительными при смещении в обе стороны от точки С.) Возьмем близкую точку X, вычислим время прохождения на пути АХВ и сравним его со старым путем АСЕ. Сделать это очень просто. Конечно, нужно еще, чтобы разность времен стремилась к нулю для малых расстояний ХС. Обратимся сначала к пути по суше. Если мы опустим перпендикуляр ЕХ, то легко увидим, что наш путь стал короче на длину ЕС. Можно сказать, что это расстояние мы выиграли. С другой стороны, опустив перпендикуляр CF, мы увидим, что в воде приходится проплыть дополнительное расстояние XF. В этом мы проиграли. С точки зрения экономии времени выигрывается время на отрезке ЕС, но теряется на отрезке XF. Эти два интервала времени должны быть равны, так как в первом приближении полное время прохождения не меняется. Предположив, что скорость в воде равна скорости в воздухе, умноженной на 1/n получим