Читать «Излучение. Волны. Кванты» онлайн - страница 17
Ричард Фейнман
мы называем фокусным расстоянием f. Величина f определяется равенством
где n=n2/n1
В противоположном случае, когда s стремится к бесконечности, s' оказывается на фокусном расстоянии /'. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокусируются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)
Забудем на время формулу для фокусного расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния:
Давайте посмотрим теперь, как работает эта формула, и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s' бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии / и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s' одинаковы, то каждое из них равно 2f.
§ 4. Увеличение
До сих пор мы рассматривали процесс фокусировки только для точек, лежащих на оси. Построим теперь изображение объектов, несколько смещенных в сторону от оси; это поможет нам понять явление увеличения. Если с помощью линзы сфокусировать свет от небольшой нити на экран, то мы увидим изображение той же нити, только несколько большего или меньшего размера по сравнению с настоящей. Отсюда мы заключаем, что свет попадает в фокус от каждой точки нити. Чтобы получше в этом разобраться, рассмотрим линзу, схематически изображенную на фиг. 27.7. Нам известно, следующее:
1) каждый луч, параллельный оси, фокусируется по другую сторону линзы в точке, называемой фокусом и расположенной на расстоянии f от линзы;
2) каждый луч, приходящий из фокуса по одну сторону линзы, выходит с другой стороны параллельно оси.
С помощью только этих фактов мы докажем формулу (27.12) геометрическим путем. Пусть объект находится на расстоянии x от фокуса и его высота есть у. Мы знаем, что луч PQ отклоняется и пройдет через фокус R по другую сторону линзы. Если свет от точки Р фокусируется линзой, достаточно определить путь еще одного луча, и тогда фокус будет расположен в точке пересечения двух лучей. Нужно только умело выбрать направление второго луча. Вспомним, что параллельный луч проходит через фокус, и наоборот: луч, проходящий через фокус, выходит параллельно оси! Поэтому проведем луч РТ через U. (Правда, фокусируемые лучи могут быть гораздо тоньше, чем начерченные нами, но их труднее изобразить, поэтому оставим нашу прежнюю схему.) Поскольку луч параллелен оси, проведем TS параллельно XW. Пересечение S и есть искомая точка. Отсюда мы получаем нужную высоту и правильное расстояние. Обозначим высоту через y', а расстояние до фокуса через x'. Теперь можно вывести формулу для линзы. Из подобных треугольников PVU и TXU находим