Читать «Излучение. Волны. Кванты» онлайн - страница 14

Ричард Фейнман

(27.2)

который связывает длины s и s' и определяет радиус кривизны R искомой поверхности:

(27.3)

Если мы хотим сфокусировать свет из точки О в точку О', то эта формула позволяет вычислить требуемый радиус кривизны поверхности.

Интересно, что та же линза с таким же радиусом кривизны R будет фокусировать и на других расстояниях, т. е. она является фокусирующей для любой пары расстояний, для которых сумма обратной величины одного расстояния и обратной величины другого, умноженного на n, есть постоянное число. Таким образом, данная линза (если учитывать только параксиальные лучи) является фокусирующей не только для точек О и О', но и для бесконечного числа пар точек, если эти пары удовлетворяют соотношению 1/s+n/s' = постоянная, характеризующая данную линзу.

f, то лучи, проходя через поверхность линзы, выйдут параллельным пучком. Легко определить f и f':

(27.4)

(27.5)

Отметим интересный факт: если мы разделим каждое фокусное расстояние на соответствующий показатель преломления, то получим один и тот же результат! На самом деле, это общая теорема. Она справедлива для любой сложной системы линз, поэтому ее стоит запомнить. Мы не доказали эту теорему в общем виде, а лишь отметили ее применимость для одной поверхности, однако оказывается, что вообще два фокусных расстояния некоторой системы связаны подобным образом. Иногда выражение (27.3) записывают в следующем виде:

(27.6)

Такая форма более удобна, чем (27.3), потому что проще измерить f, чем кривизну и показатель преломления линзы. Если нам не нужно самим конструировать линзу или изучать в подробностях весь процесс, а достаточно достать линзу с полки, то нас будет интересовать только величина f, а не n или R! Любопытная ситуация возникает, когда s становится меньше f. Что же тогда происходит? При s<f обратная величина (Us) больше (1/f) и поэтому s' отрицательна. Наша формула утверждает, что свет фокусируется только при отрицательном значении s',— понимайте как хотите! Но означает это нечто весьма определенное и интересное. Формула эта остается полезной и для отрицательных значений. Что она означает, ясно из фиг. 27.3. Исходящие из точки О лучи преломляются на поверхности, но в фокус не собираются, так как точка О расположена слишком близко к поверхности, и лучи становятся «более чем параллельны». Однако они начинают расходиться так, как будто бы вышли из точки О' вне линзы. Эта точка есть кажущееся изображение, или, как иногда говорят, мнимое изображение.

Фиг. 27.3. Мнимое изображение.

Фиг. 27.4. Плоская поверхность раздела отображает точку О' в точку О.

Изображение О' на фиг. 27.2 называется действительным изображением. Действительное изображение возникает, когда свет действительно проходит через точку. Но если кажется, что свет исходит из некоторой фиктивной точки, не совпадающей с действительным источником, то эта точка и есть мнимое изображение. Следовательно, для отрицательных s' точка О' находится по другую сторону поверхности, и все встает на свои места.