Читать «Электричество и магнетизм» онлайн - страница 39
Ричард Фейнман
(4.21)
Так как повсюду будет встречаться только разность значений функции j в двух точках, то положение точки
Электростатический потенциал
(4.22)
Часто очень удобно брать отправную точку на бесконечности. Тогда потенциал jодиночного заряда в начале координат, взятый в произвольной точке
(4.23)
Электрическое поле нескольких зарядов можно записать в виде суммы электрических полей от первого заряда, от второго, от третьего и т. д. Интегрируя сумму для того, чтобы определить потенциал, мы придем к сумме интегралов. Каждый из них — это потенциал соответствующего заряда. Значит, потенциал j множества зарядов есть сумма потенциалов каждого из зарядов по отдельности. Таким образом, и для потенциалов существует принцип наложения. Пользуясь такими же аргументами, как и тогда, когда мы искали электрическое поле группы зарядов или распределения зарядов, мы можем получить окончательные формулы для потенциала j в точке, обозначенной как (1):
(4.24)
(4.25)
Не забывайте, что потенциал j имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из некоторой отправной точки.
§4. E = -Сj
С какой стати нас заинтересовал потенциал j? Силы, действующие на заряды, даются величиной Е — электрическим полем. Вся соль в том, что Е из j очень легко получить, не труднее, чем вычислить производную. Рассмотрим две точки с одинаковыми
Но работа против действия силы на том же отрезке равна
Мы видим, что
(4.26)
Равным образом,
4.27)
Это дифференциальная форма уравнения (4.22). Любую задачу, в которой заряды заданы, можно решить, вычислив по (4.24) или (4.25) потенциал и рассчитав по (4.27) поле. Уравнение (4.27) согласуется также с тем, что получается в векторном анализе: с тем, что для любого скалярного поля
(4.28)
Согласно уравнению (4.25), скалярный потенциал j представляется трехмерным интегралом, подобным тому, который мы писали для Е. Есть ли какая выгода в том, что вместо Е вычисляется j? Да. Для вычисления j нужно взять один интеграл, а для вычисления Е—три (ведь это вектор). Кроме того, обычно 1/r интегрировать легче, чем x/r3. Во многих практических случаях оказывается, что для получения электрического поля легче сперва подсчитать j, а после взять градиент, чем вычислять три интеграла для Е. Это просто вопрос удобства.