Читать «Электричество и магнетизм» онлайн - страница 16
Ричард Фейнман
Один способ представить себе скалярное поле — это вообразить «контуры»,
т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно горизонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят название «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость
Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, который является функцией ее положения (фиг. 2.2). Другой пример — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направлениях. Поток тепла — это величина, имеющая направление;
обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.
Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, проходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикулярный к направлению потока. Вектор указывает направление потока (фиг. 2.3). В буквенных обозначениях: если DJ — тепловая энергия, протекающая за единицу времени сквозь элемент поверхности Dа, то
(2.9)
где еf —
Aа2. Угол q между n и h равен углу между поверхностями (так как h — нормаль к Da1). Чему теперь равен поток тепла через Dа2
(2.10)
Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через