Читать «Большая Советская Энциклопедия (РИ)» онлайн - страница 101
БСЭ БСЭ
Ри'мана интегра'л, обычный определённый интеграл. Само определение Р. и. по существу было дано О. Коши (1823), который, однако, применял его к непрерывным функциям. Б. Риман впервые указал (1853, опубликовано в 1867) необходимое и достаточное условие существования определённого интеграла, которое в современных терминах может быть выражено так: для существования определённого интеграла функции на некотором интервале необходимо и достаточно, чтобы: 1) интервал был конечным; 2) функция была на нём ограниченной и 3) множество точек разрыва функции на этом интервале имело лебеговскую меру нуль (см. Мера множества).
Римана сфера
Ри'мана сфе'ра, одно из возможных геометрических изображений совокупности комплексных чисел, введённое Б. Риманом. Комплексное число
z = х + iy = r (cos j + i sin j) = reij
можно изображать точками на плоскости (комплексной числовой плоскости) с декартовыми координатами х, у или полярными r, j. Для построения Р. с. проводится сфера, касающаяся комплексной числовой плоскости в начале координат; точки комплексной числовой плоскости отображаются на поверхность сферы с помощью стереографической проекции. В этом случае каждое комплексное число изображается соответствующей точкой сферы; последняя и называется сферой Римана. Число О изобразится при этом южным полюсом Р. с.; числа с одинаковым аргументом j = const (лучи комплексной числовой плоскости) изобразятся меридианами, а числа с одинаковым модулем r = const (окружности комплексной числовой плоскости) — параллелями Р. с. Северному полюсу Р. с. не соответствует никакая точка комплексной числовой плоскости. В целях сохранения взаимной однозначности соответствия между точками комплексной числовой плоскости и Р. с. на плоскости вводят «бесконечно удалённую точку», которую считают соответствующей северному полюсу и обозначают z = ¥ Т. о., на комплексной числовой плоскости имеется одна бесконечно удалённая точка, в отличие от проективной плоскости.
Если в пространстве ввести прямоугольную систему координат x, h, z так, что оси x и h совпадают, соответственно, с осями х и у, то точке x + iy комплексной числовой плоскости соответствует точка
,
,
Р. с. (уравнение которой ).
Риманова геометрия
Ри'манова геоме'трия, многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Р. г. получила своё название по имени Б. Римана, который заложил её основы в 1854.
Понятие о римановой геометрии. Гладкая поверхность в евклидовом пространстве, рассматриваемая с точки зрения измерений, производимых на ней, оказывается двумерным пространством, геометрия которого (так называемая внутренняя геометрия), будучи приближённо евклидовой в малом (в окрестности любой точки она совпадает с точностью до малых высшего порядка с геометрией касательной плоскости), точно не является евклидовой; к тому же, как правило, поверхность неоднородна по своим геометрическим свойствам. Поэтому внутренняя геометрия поверхности и есть не что иное, как Р. г. двух измерений, а сама поверхность есть двумерное риманово пространство.