Читать «Электродинамика (6a)» онлайн - страница 9
Ричард Фейнман
(22.15)
Сумма токов, входящих в узел, состоящий из четырех выводов
(22.16)
Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что
(22.17)
Наше прежнее заключение о том, что сумма падений напряжений вдоль замкнутого контура равна нулю, должно выполняться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием
С их помощью можно найти силы токов и напряжения в какой угодно цепи.
Рассмотрим, например, цепь посложнее (фиг. 22.11). Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы
z1I1+ z3I3+z4I4-e1=0.
Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.
После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b
I1-I3-I2=0.
Аналогично, в узле
I3-I4+I8-I5=0.
В изображенной схеме таких уравнений для токов пять. Оказывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых линейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).
Мы видели, что одно из уравнений для тока зависит от остальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рассматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь