Читать «Квантовая механика II» онлайн - страница 142

Ричард Фейнман

Что же означает это уравнение? Вспомним, во-первых, что

Затем заметим, что если взять ротор от уравнения (19.19), то получится

поскольку ротор градиента всегда нуль. Но СXA — это магнитное поле В, так что два первых члена можно записать в виде

q/m(E+vXB).

Наконец, вы должны уяснить себе, что дv/дt обозначает скорость изменения скорости жидкости в данной точке. Если же вас интересует отдельная частица, то ее ускорение выразится полной производной от v (или, как иногда говорят в динамике жидкостей, «сопутствующим ускорением»), связанной с дv/дt формулой [см. гл. 40, § 2 (вып. 7)]

В правой части (19.34) стоит тот же член (v·С)v. Если перенести его влево, то (19.34) перепишется так:

Затем из (19.36) следует

Это и есть уравнения движения сверхпроводящей электронной жидкости. Первое уравнение — это просто закон Ньютона для заряженной жидкости в электромагнитном поле. Оно утверждает, что ускорение каждой частицы жидкости с зарядом q вызывается действием обычной лоренцевой силы q(E+vXB) плюс добавочная сила, являющаяся градиентом какого-то таинственного квантовомеханического потенциала; эта сила обычно мала и становится заметной только при соприкосновении двух разных сверхпроводников. Второе уравнение утверждает, что жидкость «идеальна» — ротор обладает нулевой дивергенцией (у В дивергенция всегда нуль). Это означает, что скорость может быть выражена через потенциал скоростей. Обычно для идеальной жидкости пишут СXv =0, но для идеальной заряженной жидкости в магнитном поле это уравнение обращается в (19.39).

Итак, уравнение Шредингера для электронных пар в сверхпроводнике дает нам уравнения движения электрически заряженной идеальной жидкости. Теория сверхпроводимости совпадает с задачей гидродинамики заряженной жидкости. Если вы хотите решить какую-либо задачу, касающуюся сверхпроводников, вы берете эти уравнения для жидкости [или равноценную им пару (19.32) и (19.33)] и сочетаете их с уравнениями Максвелла, чтобы получить поля. (Заряды и токи, которыми вы пользуетесь, чтобы узнать поля, должны, естественно, включать как заряды и токи от сверхпроводника, так заряды и токи от внешних источников.)

Кстати, я считаю, что уравнение (19.38) не очень-то правильно, в него следует добавить член с плотностью. Он определяется не квантовой механикой, а вытекает из обычной энергии, связанной с вариациями плотности, так же как в уравнении для обычной жидкости должна стоять плотность потенциальной энергии, пропорциональная квадрату отклонения r от r0 (невозмущенной плотности, которая в нашем случае равна также плотности заряда кристаллической решетки). Поскольку должны наблюдаться силы, пропорциональные градиенту этой энергии, то в (19.38) обязан стоять еще один член, пропорциональный С(r-r0)2. В нашем анализе он не появился, потому что возникает он от взаимодействия между частицами, которым я, применяя приближение независимых частиц, пренебрег. Но это та самая сила, па которую я сослался, когда делал качественное утверждение о том, что электростатические силы стремятся сохранить r вдоль сверхпроводника почти неизменным.