Читать «Компьютерра PDA N71 (06.11.2010-13.11.2010)» онлайн - страница 43

Компьютерра

В прошлом году на этой же конференции я рассказывал о роли маркетинговых экспериментов в работе юзабилистов и о тандеме юзабилистов и маркетологов в "Яндексе". Там было много слайдов с разными кейсами. Один из них содержал график, на котором было показано, как "утекают" пользователи одного из наших продуктов - "Яндекс.Бара". На графике было показано, как от месяца к месяцу в зависимости от того, в какой месяц какая версия была установлена, падает доля пользователей.

Показав этот график, я всего лишь сказал, что сейчас кроме стандартных метрик всё важнее становится churn rate - метрика, обратная времени "жизни" пользователя на сервисе. Попробую сейчас рассказывать вам историю вокруг этой частной метрики.

Не стоит считать, что сегодня можно что-то придумать, завтра сделать и послезавтра стать миллионером. На самом деле то, что было придумано двадцать лет назад, доходит до какого-то воплощения через десять лет, и лишь ещё через десять лет становится бизнесом на миллиард.

Многие веб-разработчики полагают, что раз в их отрасли всё бурлит со страшной силой, то стоит опоздать на полчаса, и тебя выкинут из бизнеса. Это неправда. На самом деле бывают и долгие времена - на эту тему у меня есть очень яркий пример из истории поисковых машин.

Лет этак семь назад в "Яндексе" не всегда успевали вовремя доставить нужное количество серверов. Сейчас с нашими дата-центрами таких проблем уже нет. Но тогда были, и мы выяснили, что если время отклика (то есть время отрисовки страницы с результатами поиска) увеличится на 200 миллисекунд (это пятая доля секунды), то через несколько месяцев пользователи начинают реже обращаться к сервису. Часть пользователей покидает сервис - часть большая, чем в контрольной группе, которая такого замедления не наблюдала. То есть внешне, казалось бы, ничего особенного не происходило, а на долговременной статистике видны катастрофические эффекты.

Если мы сравниваем пятую долю секунды с периодом наблюдения, за который что-то скажется на пользователе, получается разница в миллионы раз. Занятно, что информацию о миллисекундах мы всегда держим в голове, а про то, что что-то изменившееся сейчас может дать долговременный эффект через время в биллион раз большее, забываем. А на самом деле это очень важно.

Поэтому я хочу рассказать про долгосрочные эффекты. Одно еще очень важное слово, которое фигурировало в первой части - это лояльность. А лояльность - это долговременные отношения. Лояльность - это не сиюминутный восторг, который часто видно на фокус-группах ("ух какая классная фишка!"). Та фишка, которая первые пятнадцать секунд вызывает сиюминутный восторг, через пять дней может начать вызывать сильно негативную реакцию.

Очень часто такие же вещи происходят с тестированием. Одно дело тестировать сиюминутные реакции и делать на основе их долгосрочные выводы. Другое дело - следить за лояльностью пользователей. И вот здесь сhurn rate (который далеко не интернетовское и современное изобретение, а давным-давно известный метод, изобретенный еще в докомпьютерные времена) становится очень и очень важен.