Читать «Пространство. Время. Движение» онлайн - страница 48
Ричард Фейнман
момент инерции был бы просто равен I1=MR2ц.м., где Rц.м.— расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I1 нужно добавить Iц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен
I=Iц+МR2ц.м. (19-7)
Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I=Smi(x2i+y2i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х' от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
xi=x'i+Xц.м..
Возводя это выражение в квадрат, находим
x2i=x'2i+2Xц.мх'i+Х2ц. м..
Что получится, если умножить его на miи просуммировать по всем i? Вынося постоянные величины за знак суммирования, находим
Ix=Smixi+2Xц. м. Smixi+X2ц. м. Smi .
Третью сумму подсчитать легко; это просто МХ2ц..м.. Второй член состоит из двух сомножителей, один из которых Smixi; он равен x'-координате центра масс. Но это должно быть равно нулю, ведь х' отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от Iц. Таким образом, мы и приходим к формуле (19.7).
Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML2/3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что МL2/3=МL2/12+М(L/2)2. Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.
Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML2, умноженной на некоторый неизвестный коэффициент g. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4g. Используя теперь теорему о параллельном переносе оси, докажем, что g=1/4g+1/4, откуда g=1/3. Всегда можно найти какой-нибудь окольный путь!