Читать «Пространство. Время. Движение» онлайн - страница 45
Ричард Фейнман
t=Smigxi=gSmixi. (19.3)
Чтобы полный момент отсутствовал, сумма Smixiдолжна быть равна нулю. Но эта сумма равна MX — полной массе, умноженной на расстояние от оси х до центра масс. Итак, это расстояние должно быть равно нулю.
Разумеется, мы провели проверку только для x-направления, однако если мы действительно взяли центр масс, то тело должно быть уравновешено в любом положении, поэтому, повернув его на 90°, мы вместо оси х получим ось у. Другими словами, если держать тело за центр масс, то параллельное гравитационное поле не дает никакого момента сил. Если же объект настолько велик, что становится существенной непараллельность сил притяжения, то точку, в которой должна быть приложена уравновешивающая сила, описать не просто: она несколько отклоняется от центра масс. Вот почему нужно помнить, что центр масс и центр тяжести — разные вещи. Тот факт, что тело, поддерживаемое точно за центр масс, уравновешено в любом положении, имеет еще одно интересное следствие. Если вместо гравитационных сил взять инерционные псевдосилы, возникающие вследствие ускорения, то, чтобы найти точку, уцепившись за которую мы уравновесим все моменты этих сил, можно использовать ту же самую математическую процедуру. Предположим, что мы заключили тело внутрь ящика, который ускоряется вместе со всем его содержимым. Тогда, с точки зрения наблюдателя, сидящего в этом ящике, на тело вследствие инерции будет действовать некая эффективная сила. Иначе говоря, чтобы заставить тело двигаться вместе с ящиком, нужно подталкивать и ускорять его. Эта сила «уравновешивается силой инерции», которая равна массе тела, умноженной на ускорение ящика. Наблюдателю в ящике будет казаться, будто тело находится в однородном гравитационном поле, величина g которого равна ускорению ящика а. Таким образом, инерционные силы, возникающие вследствие ускорения тела, не имеют момента относительно центра масс.
Этот факт имеет очень интересное следствие. В инерционной системе, движущейся без ускорения, момент сил всегда равен скорости изменения момента количества движения. Однако равенство момента силы и скорости изменения момента количества движения остается справедливым даже для ускоряющегося тела, если взять ось, проходящую через центр масс. Таким образом, теорема о равенстве момента сил скорости изменения момента количества движения верна в двух случаях: 1) ось фиксирована — в инерциальной системе; 2) ось проходит через центр масс — даже когда тело ускоряется.