Читать «5b. Электричество и магнетизм» онлайн - страница 2

Ричард Фейнман

Фиг. 10.2. Если поместить пластинку проводника внутрь плоского конденсатора, наведенные заряды обратят поле в проводнике в нуль.

Все было бы понятно, если бы речь шла о проводнике. Пусть у нас был бы, например, конденсатор, расстояние между пластинами которого равно d, и мы вставили бы между этими пластинами незаряженный проводник толщиной b (фиг. 10.2). Электрическое поле индуцирует положительный заряд на верхней поверхности и отрицательный заряд на нижней поверхности, так что в результате поле внутри проводника погашается. Во всех остальных местах поле такое же, какое было без проводника, поэтому оно равно поверхностной плотности зарядов, деленной на eо; но расстояние, по которому мы должны интегрировать, чтобы получить напряжение (разность потенциалов), стало меньше.

Напряжение равно

Окончательное выражение для емкости похоже на (10.1), где d нужно заменить разностью (d-b):

(10.3)

Емкость увеличилась в некоторое число раз, зависящее от b/d, доли объема, занятого проводником.

Отсюда мы получаем модель того, что происходит в диэлектриках: внутри материала имеется множество мелких проводящих слоев. Беда такой модели состоит в том, что в ней должна иметься выделенная ось — перпендикуляр ко всем слоям, а у большинства диэлектриков такой оси нет.

Фиг. 10.3. Модель диэлектрика; маленькие проводящие шарики, вставленные внутрь идеального изолятора.

Эту трудность, однако, можно устранить, предположив, что все изолирующие материалы содержат маленькие проводящие шарики, отделенные один от другой изолятором (фиг. 10.3). Появление диэлектрической проницаемости тогда объясняется действием зарядов, индуцируемых в каждом шарике. В этом и состоит одна из самых первых физических моделей диэлектриков, предложенная для объяснения явления, которое наблюдал Фарадей. Точнее, предполагалось, что каждый атом материала есть идеальный проводник, изолированный от остальных атомов. Диэлектрическая проницаемость x тогда должна была определяться долей того объема, который занимают проводящие шарики. Теперь, однако, пользуются другой моделью.

§ 2. Вектор поляризации Р

Продолжив наш анализ, мы обнаружим, что идея о проводящих и непроводящих участках не так уж существенна. Любой из маленьких шариков действует как диполь, момент которого создается внешним полем. Для понимания диэлектриков существенной является идея о том, что в материале возбуждается множество маленьких диполей. Почему они возбуждаются — то ли потому, что в материале есть проводящие шарики, то ли по каким-либо другим причинам — абсолютно несущественно.

Почему поле должно индуцировать дипольный момент у атома, хотя атом не является проводящим шариком? Мы обсудим этот вопрос гораздо подробнее в следующей главе, которая будет посвящена внутреннему механизму диэлектрических материалов. А сейчас мы дадим лишь один пример, только чтобы проиллюстрировать возможный механизм. Атом имеет ядро с положительным зарядом, окруженное отрицательными электронами. В электрическом поле ядро притягивается в одну сторону, а электроны в другую. Орбиты или плотности вероятности электронов (или какая-либо другая картина, используемая в квантовой механике) несколько искажаются (фиг. 10.4); центр тяжести отрицательных зарядов сместится и больше не будет совпадать с положительным зарядом ядра. Мы уже обсуждали такое распределение заряда. Если взглянуть на него издалека, то подобная нейтральная конфигурация в первом приближении эквивалентна маленькому диполю.