Читать «Математические олимпиады по лигам. 5-9 классы» онлайн - страница 2

Андрей Николаевич Павлов

В четвертый четверг проходит первый тур суперлиги. Все участники в итоге получают места с 1 по 15, причем участники, занявшие 11–15 места, переходят в высшую лигу.

Затем по тем же правилам проходит второй тур в каждой из четырех лиг, затем третий и т. д.

Если учащийся по болезни или по другим причинам пропускает какой-нибудь тур своей лиги, то он набирает 0 баллов и выбывает в более низшую лигу (а если он во второй лиге – просто занимает последнее место).

В книге представлено два комплекса олимпиад по лигам:

1. Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон. Учителя математики знают, что если пятиклассники учатся по учебному комплекту Г. В. Дорофеева и Л. Г. Петерсон, то за 5 класс проходится чуть ли не вся программа 6 класса. Это нашло свое отражение в содержании задач.

Всего в лигах предусмотрено 10 туров. Итоговые результаты подводятся просто (лучше всего это сделать в Excel). Пусть некоторый учащийся в течение десяти туров занимал места: ах, а2, ах... а. Из данных чисел отбрасываются лучший и худший результаты, а далее считается среднее арифметическое оставшихся 8 чисел:

У кого меньше число Ь, тот и выиграл (для сортировки участников по местам можно применить известную в Excel команду РАНГ). Небольшое пояснение: лучший результат отбрасывается, так как бывает случайное попадание учащегося в высшую лигу и суперлигу перед первым туром, а худший результат учащийся также может показать случайно, например, вследствие пропуска по болезни.

Итоговая таблица может выглядеть так:

2. Олимпиады по лигам (5–6 классы), адаптированные под учебник Н. Я. Виленкина и др.

Эти олимпиады четко разделены на два вида:

стандартная лига (примеры, уравнения, типовые задачи и т. д.);

олимпиадная лига (нестандартные задания).

Разделение связано с тем, что в учебном комплекте Н. Я. Виленкина и др. практически отсутствуют задачи на развитие логического мышления (правда, это не является недостатком учебника, просто он преследует другие дидактические цели). А потому есть смысл разделить математическое соревнование учащихся на две части.

Итоги подводятся так же, как и при проведении олимпиад, адаптированных под учебник Г. В. Дорофеева и Л. Г. Петерсон. Те же 10 туров, та же формула для подведения итогов.

Практика показала, что детям очень нравится такое соревнование. Неожиданным и одновременно приятным было то обстоятельство, что учащиеся, занимающие последние места, рвались на игру не хуже «обитателей суперлиги» и также живо обсуждали каждый промежуточный итог игры.

Выражаю большую благодарность своим коллегам: Наталье Михайловне Дорофеевой и Ольге Алексеевне Коржовой, которые вместе с автором книги разработали данную форму проведения математических олимпиад.

Финальная игра (5–6 классы)

Игра названа финальной, так как ее рекомендуется проводить в качестве итоговой к олимпиадам по лигам. В ней соревнуются между собой учащиеся, занявшие одинаковые места в своих классах. Так, из вышеприведенной таблицы следует, что первое место в 5а классе заняла Вертепова Татьяна, в 5б – Углов Денис, в 5в – Заводов Алексей. Значит, в финальной игре они и соревнуются между собой. В нашем случае получаем следующую таблицу участников: