Читать «Математические олимпиады по лигам. 5-9 классы» онлайн - страница 16

Андрей Николаевич Павлов

3. Сколько нечетных чисел заключено между 300 и 700?

4. Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Сколько попыток вы попросите вам предоставить, чтобы наверняка открыть все чемоданы?

5. В турнире участвовали пять шахматистов. Известно, что каждый сыграл с остальными по одной партии и все набрали разное количество очков; занявший 1-е место не сделал ни одной ничьей; занявший 2-е место не проиграл ни одной партии; занявший 4-е место не выиграл ни одной партии. Определите результаты всех партий турнира.

6. Начнем считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвертый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 1992-м?

6 тур

1. Найдите, какую цифру обозначает каждая буква в следующем равенстве: АХА= БАХ.

2. Сколько нулей на конце этого числа: 1 ? 2 ? 3 ? 4... ? 50?

3. Некоторое число уменьшили на 7, потом уменьшили в 10 раз и получили число, которое на 34 меньше исходного. Найдите исходное число.

4. Яша идет от дома до школы 30 мин, а его брат Петя 40 мин. Петя вышел из дома на 5 мин раньше Яши. Через сколько минут Яша догонит Петю?

5. Пятиклассники ехали на автомашине из деревни в город. Когда они проехали 4/5 пути, автомашина была остановлена для ремонта. Оставшуюся часть пути пятиклассники проделали пешком, затратив на это времени в 3 раза больше, чем они ехали на автомашине. Во сколько раз быстрей ехали пятиклассники на автомашине, чем шли пешком?

6. Сколько квадратов «спрятано» на рисунке?

7 тур

1. На доске написаны шесть чисел: 1, 2, 3, 4, 5, 6. За один ход разрешается к любым двум из них одновременно добавлять по единице. Можно ли за несколько ходов все числа сделать равными? Ответ обоснуйте.

2. Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.

3. Дорога от дома до школы занимает у Пети 20 мин. Однажды по дороге в школу он вспомнил, что забыл дома ручку. Если теперь он продолжит свой путь с той же скоростью, то придет в школу за 3 мин до звонка, а если вернется домой за ручкой, то, идя с той же скоростью, опоздает к началу урока на 7 мин. Какую часть пути он прошел до того, как вспомнил о ручке?

4. 20 черных коров и 15 рыжих дают за неделю столько молока, сколько 12 черных коров и 20 рыжих. У каких коров больше удои: у черных или у рыжих? Ответ обоснуйте.

5. Если написать любое двузначное число, а затем поменять местами в этом числе цифры и вычесть из большего числа меньшее, то получится число, которое делится на 9. Почему?

6. Два лесоруба, Никита и Павел, работали вместе в лесу и сели завтракать. У Никиты было 6 лепешек, у Павла – 9. Тут к ним подошел охотник.

– Вот, братцы, заблудился в лесу, до деревни далеко, а есть очень хочется; поделитесь со мною хлебом-солью!

– Ну, что ж, садись; чем богаты, тем и рады, – сказали Никита и Павел.