Читать «Математические олимпиады по лигам. 5-9 классы» онлайн - страница 14
Андрей Николаевич Павлов
5. Что больше и на сколько: 20 % от 30 или 30 % от 20?
6. Маша съедает коробку конфет за 5 мин, а Даша – за 6 мин. За какое время будут съедены все конфеты, если Маша и Даша займутся решением данного вопроса одновременно?
Суперлига
1 тур
1. В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съела 3 щук (сытых или голодных). Каково наибольшее число щук, которые могут насытиться?
2. В бочке 10 литров бензина. Как отлить из нее 6 литров с помощью девятилитрового ведра и пятилитрового бидона?
3. Отец старше сына в 4 раза, а сумма их возрастов составляет 50 лет. Через сколько лет отец станет втрое старше сына?
4. Расставьте в записи 4 ? 12 + 18:6 + 3 скобки так, чтобы получилось: а) число 50; б) наименьшее возможное число; в) наибольшее возможное число.
5. При сложении двух целых чисел ученик по ошибке поставил во втором слагаемом лишний нуль на конце и получил в сумме 6641 вместо 2411. Определите слагаемые.
6. При делении одного числа на другое получилось в частном 28 и в остатке 84. Как изменится частное и как изменится остаток, если делимое и делитель уменьшить в 7 раз?
2 тур
1. Куб со стороной 1 м распилили на кубики со стороной 1 см. Получившиеся кубики выложили вряд. Чему равна длина ряда?
2. Применяя знаки арифметических действий и, возможно, скобки, запишите восемью двойками число 200 (разрешено использовать такие числа, как 22, 222, 2222 и т. д.).
3. Во сколько раз увеличится трехзначное число, если справа к нему приписать такое же число? Ответ подтвердите двумя примерами.
4. Докажите, что из любых трех целых чисел можно найти два, сумма которых делится на 2.
5. Сошлись два пастуха, Иван и Петр. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!» А Петр ему отвечает: «Нет! Лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!» Сколько же было у каждого овец?
6. На прямоугольном торте лежит круглая шоколадка, причем отнюдь не посередке. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
3 тур
1. В коробке лежат 4 цветных карандаша и 10 простых. Берут из этой коробки наугад несколько карандашей. Какое наименьшее число карандашей надо взять из коробки, чтобы среди них с гарантией оказалось не менее: а) двух цветных; б) трех простых?
2. Поблизости один от другого расположены два населенных пункта, А и В. Все жители А говорят только правду, а жители В всегда лгут. Жители А и В посещают друг друга. Ты находишься в каком-то из этих пунктов. Какой вопрос (только один) ты можешь задать первому встретившемуся тебе в этом пункте человеку, чтобы по ответу на этот вопрос ты мог установить, А это или В?