Читать «Том 2. Электромагнетизм и материя» онлайн - страница 9

Ричард Филлипс Фейнман

(1.5)

Фиг. 1.5. Циркуляция векторного поля, равная произведению средней касательной составляющей вектора (с учетом ее знака по отношению к направлению обхода) на длину контура.

Вы видите, что это определение действительно дает число, пропорциональное циркуляции скорости в трубке, просверленной в быстрозамороженной жидкости.

Пользуясь только этими двумя понятиями — понятием о потоке и понятием о циркуляции,— мы способны описать все законы электричества и магнетизма. Вам, быть может, трудно будет отчетливо понять значение законов, но они дадут вам некоторое представление о том, каким способом в конечном счете может быть описана физика электромагнитных явлений.

§ 4. Законы электромагнетизма

Первый закон электромагнетизма описывает поток электрического поля:

(1.6)

где ε0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы докажем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сферически симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значению Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутреннему заряду, значит, поле должно убывать, как квадрат расстояния; так получается поле «обратных квадратов».

Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то окажется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив второй закон, утверждающий, что

(1.7)

И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:

(1.8)

А для поверхности S, ограниченной кривой С:

(1.9)

Появившаяся в уравнении (1.9) постоянная с2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа ε0 поставлена для того, чтобы возникли привычные единицы силы электрического тока.

Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики.

Как вы помните, законы Ньютона написать было очень просто, но из них зато вытекало множество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.