Читать «Том 2. Электромагнетизм и материя» онлайн - страница 7

Ричард Филлипс Фейнман

Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках пространства принимает различные значения. Скажем, температура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может меняться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v(х, у, z, t). Поле это векторное.

Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следующее важное свойство: связь между значениями полей в некоторой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.

Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо просто рассматривать поля как математические функции координат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по вектору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приводится на фиг. 1.1.

Фиг. 1.1. Векторное поле, представленное множеством стрелок, длина и направление которых отмечают величину векторного поля в тех точках, откуда выходят стрелки.

Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками и сохраняют направление поля. Если это сделать, то сведения о длинах векторов будут утеряны, но их можно сохранить, если в тех местах, где напряженность поля мала, провести линии пореже, а где велика — погуще. Договоримся, что число линий на единицу площади, расположенной поперек линий, будет пропорционально напряженности поля. Это, конечно, всего лишь приближение; иногда нам придется добавлять новые линии, чтобы их количество отвечало напряженности поля. Поле, изображенное на фиг. 1.1, представлено линиями поля на фиг. 1.2.

Фиг. 1.2. Векторное поле, представленное линиями, касательными к направлению векторного поля в каждой точке. Плотность линий указывает величину вектора поля.

§ 3. Характеристики векторных полей

Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем случае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает. Общее количество жидкости, вытекающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммарный поток равен среднему значению нормальной компоненты скорости (отсчитываемой наружу), умноженному на площадь поверхности: