Читать «Геометрия, динамика, вселенная» онлайн - страница 8
Иосиф Леонидович Розенталь
Следует четко понимать, что в экспериментальном подходе в проверку пятого постулата «нет» и «да» весьма неэквивалентны. Метод, основанный на измерении суммы углов треугольника, может продемонстрировать отклонение от евклидовой геометрии, но не может доказать ее абсолютную справедливость. Действительно. какой бы треугольник в пределах наблюдаемой части Вселенной мы ни использовали в качестве образца, всегда можно утверждать, что его площадь мала, а точность наших приборов недостаточна для обнаружения отклонений от евклидовой геометрии. Все же известная польза от опытов Гаусса — Лобачевского (или аналогичных экспериментов) существует: если и есть отклонения от евклидовой геометрии, то они малы. Это вывод верен по крайней мере для масштабов, существенно превышающих привычные земные расстояния.
Итак, с одной стороны, евклидовость пространства допускает опытную проверку. В другом аспекте — евклидова геометрия как логическая система аксиом и теорем является лишь одной из возможностей. В дальнейшем мы продемонстрируем, что таких возможностей много, существенно больше, чем полагали основоположники неевклидовой геометрии. Тем не менее геометрия нашего пространства евклидова или почти евклидова. Почему природа выбрала этот вариант геометрии? На этот вопрос мы попытаемся ответить в гл.3.
Здесь же мы ограничимся замечанием, что среди всех логически замкнутых геометрий система Евклида является наиболее простой. Представляется, что, помимо простоты, эта геометрия также и наиболее естественна. Впрочем, подобное суждение лишь отражает субъективное мнение автора.
Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что «прямые» в таком сферическом пространстве — кратчайшие расстояния между двумя заданными точками на сфере, т. е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере. Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой — отсутствием границ, но не обладает другим ее свойством — бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно, далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т. е. «параллельную». Иначе говоря, все «прямые» пересекаются.
Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида. Здесь полезно подчеркнуть, что подобный прием — вычленение из более сложной геометрии простейшей (в данном случае геометрии Евклида) с помощью выделения малой части полного пространства (здесь — сферы) — прием весьма распространенный и мы далее столкнемся с ним не раз.