Читать «Гидравлика» онлайн - страница 25

М. А. Бабаев

В рассматриваемых сечениях поток должен быть плавно изменяющимся. Между сечениями могло бы произойти что угодно.

Поскольку суммарные потери напора

то находим потери напора на этом же участке;

3) по формуле (5) находим, что hм= hпр– hl, после этого по формуле (2) находим искомый коэффициент

сопротивления

49. Местные сопротивления

Что происходит после того, как поток вошел с некоторым напором и скоростью в трубопровод.

Это зависит от вида движения: если поток ламинарный, то есть его движение описывается линейным законом, тогда его кривая – парабола. Потери напора при таком движении достигают (0,2 × 0,4) × (υ2/ 2g).

При турбулентном движении, когда оно описывается логарифмической функцией, потери напора – (0,1 × 1,5) × (υ2/2g).

После таких потерь напора движение потока стабилизируется, то есть восстанавливается ламинарный или турбулентный поток, каким и был входной.

Участок, на котором происходят вышеуказанные потери напора, восстанавливается по характеру, прежнее движение называется начальным участком.

А чему равна длина начального участка lнач.

Турбулентный поток восстанавливается в 5 раз быстрее, чем ламинарный, при одних и тех же гидравлических сопутствующих данных.

Рассмотрим частный случай, когда поток не сужается, как рассмотрели выше, но внезапно расширяется. Почему происходят потери напора при такой геометрии потока?

Для общего случая:

Чтобы определить коэффициенты местного сопротивления, преобразуем (1) в следующий вид: разделив и умножив на υ12

Определим υ21 из уравнения неразрывности

υ1w1= υ2w2 как υ21= w1/w2 и подставим в (2):

Остается заключить, что

50. Расчет трубопроводов

Задачи расчета трубопроводов.

Требуются решать следующие задачи:

1) требуется определить расход потока Q, при этом заданы напор Н; длина трубы l; шероховатость трубы Δ; плотность жидкости r; вязкость жидкости V (кинематическая);

2) требуется определить напор Н. Заданы расход потока Q; параметры трубопровода: длина l; диаметр d; шероховатость Δ; параметры жидкости: ρ плотность; вязкость V;

3) требуется определить необходимый диаметр трубопровода d. Заданы расход потока Q; напор Н; длина трубы l; ее шероховатость Δ; плотность жидкости ρ; ее вязкость V.

Методика решений задач одна и та же: совместное применение уравнений Бернулли и неразрывности.

Напор определяется выражением:

Расход жидкости,

поскольку J = H / l

Важной характеристикой трубопровода является величина, которая объединяет некоторые параметры трубопровода, исходя из диаметра трубы (рассматриваем простые трубы, где диаметр по всей длине l постоянен). Этот параметр k называют расходной характеристикой:

Если начинать наблюдение с самого начала трубопровода, то увидим: некоторая часть жидкости, не изменяясь, доходит до конца трубопровода транзитом.

Пусть это количество будет Qт (транзитный расход).

Жидкость по пути частично раздается потребителям: обозначим эту часть как Qp (путевой расход).

С учетом этих обозначений, в начале трубопровода

Q = Qт+ Qp,

соответственно, в конце расход потока

Q – Qp= Qт.

Что касается напора в трубопроводе, то: