Читать «Гидравлика» онлайн - страница 22
М. А. Бабаев
Без вывода приводим окончательную формулу для пульсационной «добавки» касательного напряжения:
42. Параметры потока, от которых зависит потеря напора. Метод размерностей
Неизвестный вид зависимости определяется по методу размерностей. Для этого существует π-теорема: если некоторая физическая закономерность выражена уравнением, содержащим к размерных величин, причем оно содержит п величин с независимой размерностью, то это уравнение может быть преобразовано в уравнение, содержащее (к-п) независимых, но уже безразмерных комплексов.
Для чего определимся: от чего зависят потери напора при установившемся движении в поле сил тяжести.
Эти параметры.
1. Геометрические размеры потока:
1) характерные размеры живого сечения l1l2;
2) длина рассматриваемого участка l;
3) углы, которыми завершается живое сечение;
4) свойства шероховатости: Δ– высота выступа и lΔ – характер продольного размера выступа шероховатости.
2. Физические свойства:
1) ρ – плотность;
2) μ – динамическая вязкость жидкости;
3) δ – сила поверхностного натяжения;
4) Еж – модуль упругости.
3. Степень интенсивности турбулентности, характеристикой которой является среднеквадратичное значение пульсационных составляющих δu.
Теперь применим π-теорему.
Исходя из приведенных выше параметров, у нас набирается 10 различных величин:
l, l2, Δ, lΔ, Δp, μ, δ, Eж,δu, t.
Кроме этих, имеем еще три независимых параметра: l1, ρ, υ. Добавим еще ускорение падения g.
Всего имеем к = 14 размерных величин, три из которых независимы.
Требуется получить (ккп) безразмерных комплексов, или, как их называют π-членов.
Для этого любой параметр из 11, который не входил бы в состав независимых параметров (в данном случае l1, ρ, υ), обозначим как Ni, теперь можно определить безразмерный комплекс, который является характеристикой этого параметра Ni, то есть i-тый π-член:
Здесь углы размерности базовых величин:
общий вид зависимости для всех 14 параметров имеет вид:
43. Равномерное движение и коэффициент сопротивления по длине. Формула Шези. Средняя скорость и расход потока
При ламинарном движении (если оно равномерное) ни живое сечение, ни средняя скорость, ни эпюра скоростей по длине не меняются со временем.
При равномерном движении пьезометрический уклон
где l1– длина потока;
hl– потери напора на длине L;
r0d – соответственно радиус и диаметр трубы.
В формуле (2) безразмерный коэффициент λ называют коэффициентом гидравлического трения или коэффициентом Дарси.
Если в (2) d заменить на гидравлический радиус, то следует
Введем обозначение
тогда с учетом того, что
гидравлический уклон
Эту формулу называют формулой Шези.
называется коэффициентом Шези.
Если коэффициент Дарси λ – величина безразмерр
ная, то коэффициент Шези с имеет размерность
Определимся с расходом потока с участием коэфф
фициента Шези:
Преобразуем формулу Шези в следующий вид:
Величину
называют динамической скоростью
44. Гидравлическое подобие
Понятие о подобии. Гидродинамическое моделирование
Для исследования вопросов сооружения гидроэлектростанций применяют метод гидравлических подобий, суть которого состоит в том, что в лабораторных условиях моделируются точно такие же условия, что и в натуре. Это явление называют физическим моделированием.