Читать «Гидравлика» онлайн - страница 21
М. А. Бабаев
Ранее, считая, что эти передачи в подвязкий слой отсутствуют, слой назвали ламинарной пленкой. Теперь нетрудно убедиться, что с точки зрения современной гидравлики ламинарность движения в этом слое относительная (интенсивность ε в подвязком слое (ламинарной пленке) может достигать значения 0,3. Для ламинарного движения это достаточно большая величина)
Подвязкий слой εв очень тонкий по сравнению с основным потоком. Именно наличие этого слоя порождает потери напора (удельной энергии).
Что касается толщины ламинарной пленки δв, то она обратно пропорциональна числу Re. Это более наглядно видно из следующего сравнения толщины в зонах потока при турбулентном движении.
Вязкий (ламинарный) слой – 0 < ua / V < 7.
Переходная зона – 7 < ua/V < 70.
Турбулентное ядро – ua/V < 70.
В этих соотношениях u – динамическая скорость потока, а – расстояние от твердой стенки, V – кинематическая вязкость.
Углубимся немного в историю теории турбулентности: эта теория включает в себя совокупность гипотез, на основании которых были получены зависимости между основными параметрами ui,τ турбулентного движения потока.
У разных исследователей к этому вопросу были разные подходы. Среди них немецкий ученый Л. Прандтль, советский ученый Л. Ландау и многие другие.
Если до начала XX в. ламинарный слой, по мнению ученых, представлял собой некоторый мертвый слой, в переходе к которому (или от которого) происходит как бы разрыв скоростей, то есть скорость меняется скачкообразно, то в современной гидравлике совсем другая точка зрения.
Поток – это «живое» явление: все переходные процессы в нем носят непрерывный характер.
40. Распределение скоростей в «живом» сечении потока
Современной гидродинамике удалось разрешить эти проблемы, применив метод статистического анализа. Основным орудием этого метода является то, что исследователь выходит за рамки традиционных подходов и применяет для анализа некие средние по времени характеристики потока.
Усредненная скорость
Ясно, что в любой точке живого сечения любую мгновенную скорость и можно разложить на ux, uy, uz компоненты.
Мгновенная скорость определяется по формуле:
Полученную скорость можно назвать скоростью, усредненной по времени, или средней местной эта скорость ux – фиктивно постоянная и позволяет судить о характеристике потока.
Вычислив uy,ux можно получить вектор усредненной скорости
Касательные напряжения τ = τ + τ ,
определим и суммарное значение касательного напряжения τ. Поскольку это напряжение возникает из-за наличия сил внутреннего трения, то жидкость считают ньютоновой.
Если предположить, что площадь соприкосновения – единичная, то сила сопротивления
где μ – динамическая вязкость жидкости;
dυ/dy – изменение скорости. Эту величину часто называют градиентом скорости, или скоростью сдвига.
В настоящее время руководствуются выражением, полученным в вышеупомянутом уравнении Прандтля:
где ρ– плотность жидкости;
l– длина пути, на котором рассматривается движение.