Читать «Гидравлика» онлайн - страница 12
М. А. Бабаев
При выводе (2) учли
Расход потока – это такое количество жидкости, которое проходит через живое сечение за единицу времени.
Для потока, состоящего из элементарных струек, расход:
где dQ = dω – расход элементарного потока;
U– скорость жидкости в данном сечении.
Q = uw.
21. Разновидность движения
В зависимости от характера изменения поля скоростей различают следующие виды установившегося движения:
1) равномерное, когда основные характеристики потока – форма и площадь живого сечения, средняя скорость потока, в том числе по длине, глубине потока (если движение безнапорное), – постоянны, не изменяются; кроме того, по всей длине потока вдоль линии тока местные скорости одинаковы, а ускорений вовсе нет;
2) неравномерное, когда ни один из перечисленных для равномерного движения факторов не выполняется, в том числе и условие параллельности линий токов.
Существует плавно изменяющееся движение, которое все же считают неравномерным движением; при таком движении предполагают, что линии тока примерно параллельны, и все остальные изменения происходят плавно. Поэтому, когда направление движения и ось ОХ сонаправлены, то пренебрегают некоторыми величинами
Ux ≈ U; Uy = Uz = 0. (1)
Уравнение неразрывности (1) для плавно изменяющегося движения имеет вид:
аналогично для остальных направлений.
Поэтому такого рода движение называют равномерным прямолинейным;
3) если движение нестационарное или неустановившееся, когда местные скорости с течением времени изменяются, то в таком движении различают следующие разновидности: быстро изменяющееся движение, медленно изменяющееся движение, или, как часто его называют, квазистационарное.
Давление разделяют в зависимости от количества координат в описывающих его уравнениях, на: пространственное, когда движение трехмерное; плоское, когда движение двухмерное, т. е. Uх, Uy или Uz равна нулю; одномерное, когда движение зависит только от одной из координат.
В заключение отметим следующее уравнение неразрывности для струйки, при условии, что жидкость несжимаемая, т. е. ρ= const, для потока это уравнение имеет вид:
Q = υ1ω1= υ
где υiωi – скорость и площадь одного и того же сечения с номером i.
Уравнение (3) называют уравнением неразрывности в гидравлической форме.
22. Дифференциальные уравнения движения невязкой жидкости
Уравнение Эйлера служит одним из фундаментальных в гидравлике, наряду с уравнением Бернулли и некоторыми другими.
Изучение гидравлики как таковой практически начинается с уравнения Эйлера, которое служит исходным пунктом для выхода на другие выражения.
Попробуем вывести это уравнение. Пусть имеем бесконечно малый параллелепипед с гранями dxdydz в невязкой жидкости с плотностью ρ. Он заполнен жидкостью и движется как составная часть потока. Какие силы действуют на выделенный объект? Это силы массы и силы поверхностных давлений, которые действуют на dV = dxdydz со стороны жидкости, в которонаходится выделенный dV. Как силы массы пропорциональны массе, так и поверхностные силы пропорциональны площадям, на которые оказывается давление. Эти силы направлены к граням вовнутрь по нормали. Определим математическое выражение этих сил.