Читать «Большая Советская Энциклопедия (СВ)» онлайн - страница 95
БСЭ БСЭ
Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля. Прямые измерения сверхпроводников при Н = 0 показывают, что при понижении температуры теплоёмкость в точке перехода Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности Тк (рис. 6). При этом теплота перехода Q = 0, что следует, в частности, из формулы (2) (Нк = 0 при Т = Тк). Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой Нк (Т) (рис. 5) в точке Т = Тк:
,
где Сс и Сн— значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.
Природа сверхпроводимости. Совокупность экспериментальных фактов о С. убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле — эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта , заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* — заряд носителей сверхпроводящего тока, h — , с — . В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е — заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает , на основе которого в 1957 Дж. , Л. и Дж. (США) и Н. Н. (СССР) построили последовательную микроскопическую теорию С. Согласно Куперу, два электрона с противоположными при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются . Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают т. н. бозе-конденсацию (см. ), и поэтому система куперовских пар обладает свойством . Т. о., С. представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 kTk, где k — . При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (), в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее развитие теории С. стимулировало интенсивные теоретические поиски других механизмов С. В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, — и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные С., по-видимому, могут иметь место и в некоторых космических объектах, например в .