Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 39
БСЭ БСЭ
Лит.: Пшелэнцкий М., О так называемых операционных определениях, в кн.: Studia Logica, t. 3, Warsz., 1955; Хилл Т. И., Современные теории познания, пер. с англ., М., 1965; Горский Д. П., Операциональные определения и операционализм П. Бриджмена, «Вопросы философии», 1971, № 6; Кемпфер Ф. А., Путь в современную физику, пер. с англ., М., 1972. См. также лит. при ст. П. У.
М. М. Новосёлов.
Операционное время
Операцио'нное вре'мя , время, затрачиваемое на выполнение . Рассчитывается методами технического нормирования. Его главной задачей в условиях социалистического производства является обеспечение быстрого роста производительности труда. Поэтому при нормировании О. в. изучаются и выявляются все явные и скрытые потери рабочего времени, разрабатываются организационно-технические мероприятия, обеспечивающие ликвидацию этих потерь, а также проектируются и внедряются , основанные на передовой организации труда.
Операционное исчисление
Операцио'нное исчисле'ние , один из методов математического анализа, позволяющий в ряде случаев посредством простых правил решать сложные математические задачи. О. и. имеет особенно важное значение в механике, автоматике, электротехнике и др. В основе метода О. и. лежит идея замены изучаемых функций (оригиналов) некоторыми др. функциями (изображениями), получаемыми из первых по определённым правилам (обычно, изображение — функция, получаемая из данной ). При такой замене оператор дифференцирования р = интерпретируется как алгебраическая величина, вследствие чего интегрирование некоторых классов линейных дифференциальных уравнений и решение ряда др. задач математического анализа сводится к решению более простых алгебраических задач. Так, решение линейного дифференциального уравнения сводится к более простой, вообще говоря, задаче решения алгебраического уравнения; из алгебраического уравнения находят изображение решения данного уравнения, после чего по изображению восстанавливают само решение. Операции нахождения изображения по оригиналу (и наоборот) облегчаются наличием обширных таблиц «оригинал — изображение».
Для развития О. и. большое значение имели работы английского учёного О. Хевисайда. Он предложил формальные правила обращения с оператором р = и некоторыми функциями от этого оператора. Пользуясь О. и., Хевисайд решил ряд важнейших задач электродинамики. Однако О. и. не получило в трудах Хевисайда математического обоснования, многие его результаты оставались недоказанными. Строгое обоснование О. и. было дано с помощью интегрального преобразования Лапласа. Если при этом преобразовании функция f (t ), 0 £ t < + ¥, переходит в функцию F (z ), z = x+iy :